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IN EQUIVARIANT BIFURCATION PROBLEMS 
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1. INTRODUCTION 

In both equivariant bifurcation theory [GSS, especially Chap­
ter XIII] and physical theories of spontaneous symmetry breaking 
(for example, the Higgs-Landau theory [M]), there is the problem 
of determining the symmetries, stabilities and branching patterns 
for solutions of equations equivariant under a compact Lie group 
G. Very few general results and techniques are known for the anal­
ysis of this problem, though versions of a Maximum Isotropy Sub­
group Conjecture have been conjectured, to the effect that gener-
ically all solution branches have maximal isotropy (see for exam­
ple [G, M]). General results of this type are of particular inter­
est for applications on account of the inherent complexity of the 
structure of isotropy subgroups, invariants and equivariants for 
^-representations. In this note, we announce several new results 
for the general study of the symmetries and branching patterns for 
a large class of G-equivariant bifurcation problems. In particular, 
we give new counterexamples to the Maximal Isotropy Subgroup 
Conjecture and present examples where one can get precise infor­
mation on the branching patterns. Our methods also show that 
one can get quite detailed information on these problems without 
full knowledge of the G-equivariants. To simplify our exposition, 
we assume G finite. 

Let F be a finite dimensional real Hubert space and G —• 0{V) 
be an absolutely irreducible representation of the finite group G. 
Let G act on V xR by g • (x, A) = {g • x, A) and let 8? = 
C™(V x R, V) be the space of smooth G-equivariant maps of 
V x R to V. Give S? the C°°-topology; subsets of 8? are given 
the induced topology. Each ƒ e S? defines a one-parameter family 
(/Â)A€R °f e Q u i v a r i a n t vector fields on V. We have /(O, X) = 
0, A € R. These are the trivial zeros of ƒ . We study zeros of 
ƒ bifurcating off the trivial zeros. Now D{f(0, A) = of(X)Idv , 
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where oy : R —• R is smooth. Normalizing, we may restrict 
attention to the subset <2J = {ƒ G %?\of{K) = k{k G R)} of ^ . If 
ƒ G 8?Q , (0,0) is a bifurcation point of ƒ . We study the germ 
of / _ 1 (0 ) at (0, 0) for generic ƒ . We give results that allow 
us to obtain detailed information on such germs for many pairs 
(G9V). 

The second named author would like to thank the Institute for 
Advanced Study, Princeton for partial support during the prepa­
ration of this paper. 

2. SOLUTION BRANCHES AND STABLE MAPS 

Let ƒ e âT0 and let y = (0, rj) : [0, Ô] -+ V x R be a C^-arc. 
Then y is a solution branch for ƒ at (0, 0) if: (i) f(y(s)) = 0 
and y(s) ^ 0 (s G [0, ô]) ; and (ii) y(0) = (0 ,0 ) . Two solution 
branches y, p are equivalent if (roughly) the germs of image (y) 
and image (p) at (0, 0) are equal. Let Z(ƒ) be the set of equiv­
alence classes of solution branches for ƒ and let [y] be the equiv­
alence class of y. Clearly G acts on J2(f) • The solution branch 
y (or [y] ) is a branch of hyperbolic zeros if, for every s G (0, J ] , 
0(^) is a hyperbolic zero of f *.. We say that a G £ ( ƒ ) is staWe 
if there is a neighborhood £/ of ƒ in ^ such that if {ft)te[0 X] is 
a continuous curve in U with f0 = ƒ , then there is a continuous 
family (y,),€r0 n of C^-maps [ 0 , ^ ] - > F x l such that each yt 

is a branch of hyperbolic zeros of ft and [y0] = a. We say that 
ƒ G ̂  is stable if 2(ƒ) is a finite set of stable branches and if 
there is a neighborhood U of ƒ such that |2(/) | = |2(A)| for 
every h e U . The set f = &{G9 V) of stable ƒ G 2PQ is a 
dense open subset of Sf0 [F, Theorem 3.3]. 

3. SYMMETRY BREAKING ISOTROPY TYPES 

If x G V , the conjugacy class (Gx) of Gx in G is the isotropy 
type of x ; I(G, V) denotes the set of isotropy types for (G, V) 
and T = (Gx) is maximal if Gx ^ G and if G^ £ Gy implies 
Gy = G. The isotropy type r is symmetry breaking (resp. gener-
ically symmetry breaking) if there exists a nonempty open subset 
(resp. a dense open subset) U of 5? such that, for every f e U, 
there exists a G S(ƒ) such that (Ga) = %. 

Recall that a line L = Rx in F is an axis of symmetry of G 
if L = FG*. If L = Rx is an axis of symmetry, then (Gx) is 
maximal and is generically symmetry breaking [GSS, volume 2, 
Chapter XIII, Theorem 3.3], [FR]. 
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The following statement, now known to be false for certain 
(G, V), is known as the Maximal Isotropy Subgroup Conjecture 
(MISC): 

(MISC) An isotropy type T ^ (G) is symmetry breaking if and 
only if it is maximal. 

In all examples known to us, maximal isotropy types are gener-
ically symmetry breaking. But it is not known whether this is 
always so or even whether there need exist any symmetry break­
ing isotropy types. Roughly speaking, symmetry breaking maximal 
isotropy types have been considered as "expected" and symmetry 
breaking submaximal isotropy types have been considered as "ex­
ceptional." Our examples show, however, that symmetry breaking 
submaximal isotropy types are extremely common and should not 
be considered as unusual phenomena. 

Example 1 [FR]. The MISC holds for the irreducible reflection 
groups W(Ak), W(Bk), W(F4) and all reflection groups in di­
mension < 3 . For the reflection groups W(Dk) (k > 4), there is 
exactly one submaximal isotropy type which is (generically) sym­
metry breaking. 

4. THE STABILITY THEOREM 

Let PG(V, V) (resp. PG(V, V) ) be the space of G-equivariant 
polynomial maps (resp. G-equivariant homogeneous polynomial 
maps of degree d ) from V \o V and let P{

G
] = Y,r<d Pr

G{V, V). 
We say that R e PG(V, V) is radial if R(x) = p(x)x {x e V), 
where p is an invariant polynomial; RG{V9 V) = ^ZdRG(V, V) 
is the space of radial equivariants. Let d(G, V) be the smallest 
integer d such that RG(V, V) ± Pd

G(V\ V). If Q e PG(V, V), 
then 9°Q denotes the vector field on the unit sphere S of V given 
by &Q(x) = Q(x) - (Q(x)\x)x (x e V). Note that &Q+R = &>Q 

for all ReRG{V, V). 

Let QePG(V,V) and let 3r(&Q) be the zero set of &>Q; if 
a e ^{^Q) , then Q(a) = fiaa, with /iaeR. For every K G M, 

we define QK e â?0 by QK{x, X) = Xx - Q(x) + K \\ x ||2 x. 
For a e &(&>Q) , / c e l , define ^ : [0, 1] -> V x R by </>*a(s) = 
(sa, fias ~l - Ks2) ; then </>* is a solution branch of QK . 

Theorem 1. Let Q e PG'{G'V)(V, V) and let a be a hyperbolic 
zero of 3°Q . Then for all but finitely many values of K , [cf>K

a] is 
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stable. If all zeros of ^Q are hyperbolic, then QK is stable for all 
but finitely many values of K . 

Theorem 1 is proved by a straightforward blowing-up and per­
turbation argument. 

5. THE VANISHING AXIS THEOREM 

Let H be a subgroup of G such that (H, V) is absolutely 
irreducible and such that d(G, V) = d(H, V). A line L = Rx 
in V is a vanishing axis of symmetry (VAS) for H if (i) L is an 
axis of symmetry for G ; (ii) the isotropy type (Hx) e I(H, V) is 

not maximal; and (iii) there exists Q e PgG'v\v, V) such that 
x/| |x|| is a hyperbolic zero of &Q . As a corollary of Theorem 1, 
we have 

Theorem 2. If L = Rx is a vanishing axis of symmetry for H, then 
(Hx) e I(H, V) is a submaximal symmetry breaking isotropy type 
and the MISC fails for (H,V). 

Identify the symmetric group Sk with the group of all k by k 
permutation matrices. Let Zk be the subgroup of Sk generated 
by the cyclic permutation ( 1 , 2 , . . . , / : ) . Let Zk

2 be the group 
of all k by k matrices of the form diag(±l, . . . , ±1) and let 
(zJ)' = { g € Z ^ | d e t ( s ) = l } . 

Example 2. (a) Let k > 4 , let G = W{Bk), let H = W(Dk) and let 
x = (1 , . . . , 1, 0). Then Rx is a VAS for H. (b) Let k > 4 , let 
G = W(Bk), let H = Zk • (Z2*); and let x = (1 , 1, . . . , 1, 0). 
Then Rx is a VAS for ff and fl^ = {1}. Thus the trivial 
isotropy type ({1}) is symmetry breaking for (H,Rk). (c) Let 
G = (W(B3)), let H = Z3 • l\ and let x = (1 , 1, 0). Then Rx 
is a VAS for H. This is the only example in R3 for which the 
MISC fails, (d) We have examples of subgroups H of W(BB) of 
order 128 and ƒ e S?{H, R8) such that £ ( ƒ ) contains a branch 
of sinks with trivial isotropy. (e) Let k > 3 , let G = W(Bk) and 
let H = T • Z 2 , where T is a transitive subgroup of Sk. As­
sume T ^ Sk9 Ak (the alternating group), or, if k = 6, is not 
isomorphic to S5. Then there is a VAS for ( # , R * ) . 



SYMMETRY BREAKING IN EQUIVARIANT BIFURCATION PROBLEMS 83 

6. DETERMINANCY AND BRANCHING PATTERNS 

For ƒ G JT0, let Jd(f) = j d (ƒ)((), 0) € / ^ ( K , K) denote the 
rf-jet of f0 at 0. Let d > 1. We say that (G, K) is d-determined 

if there exists a dense open subset ^(rf) of P$\v, V) such that 
if ƒ e &0, then ƒ is stable if and only if Jd(f) e 31 {d). By [F, 
Theorem 3.13], there exists d > d(G, V) such that (G, V) is d~ 
determined; let ô(G, V) denote the smallest such integer d. Let 
^ = ^ ( G , V) denote the set of all Q G Pd

G
{G'V){V, V) such that 

all zeros of â°Q are hyperbolic. As a second corollary of Theorem 
1, we have 

Theorem 3. Assume that d(G, V) > 3 and that %f is a dense 
open subset of p£{G>V). Then d(G, V) = Ô(G, V). 

Remark. If d(G, V) = 2 and if X is a dense open subset of 
PQ(V , V), then ô(G, V) equals 2 or 3 . For example, if k is odd 
(resp. even), then W{Ak) is 3-determined (resp. 2 determined). 

Let ƒ G *5^(G, F ) . We call (the isomorphism class of) the G-
set S ( ƒ) the branching pattern of ƒ . By the definition of stability, 
the branching pattern is locally constant on S?. If the hypotheses 
of Theorem 3 hold, it is often possible to get a precise description 
of the possible branching patterns for (G, V). 

Example 3. (a) For all of the reflection groups mentioned in Ex­
ample 1, there is exactly one branching pattern, (b) Let H be 
as in Examples 2(e). In low dimensional cases of this type, we 
have obtained detailed information on possible branching patterns. 
Typically, several different branching patterns may occur and, in 
particular, there are symmetry breaking isotropy types which are 
not generically symmetry breaking, (c) Let G = Z4 • Z^. It can 
be shown that there is an open subset U of S? such that if 
ƒ G U, then all branching is supercritical (forward), there are 
no branches of sinks, and there exist branches of (attracting) limit 
cycles branching off of the trivial solution. 

Remarks, (a) It is possible to attach more information to the 
branching pattern, such as the direction of branching and the in­
dex of the hyperbolic zeros along each branch. Typically, these 
other invariants can vary on the open subsets of S? where the 
branching pattern is constant, (b) Our main results carry over to 
the case where G is a compact Lie group and we work in terms 
of flow-invariant G-orbits (as opposed to G-orbits of zeros). 
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