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RIGIDITY AND OTHER TOPOLOGICAL ASPECTS 
OF COMPACT NONPOSITIVELY CURVED MANIFOLDS 

F. T. FARRELL AND L. E. JONES 

ABSTRACT. Let M be a compact connected Riemannian man­
ifold whose sectional curvature values are all nonpositive. Let 
T denote the fundamental group of M. We prove that any 
homotopy equivalence ƒ : N —> M from a compact closed 
manifold TV is homotopic to a homeomorphism, provided that 
m > 5 where m = dim M . We show that the surgery L-group 
Lk+m(T, w{) is isomorphic to the set of homotopy classes of 

k k 
maps [M x I rel d , GI TOP], where / is the Ac-dimensional 
cube (with k > 0 ). We also show that the Whitehead group 
Wh(r), the projective class group KQ(ZT), and the lower K-
groups K_n(ZT), n > 1 , are all isomorphic to the one el­
ement group. The higher AT-groups Kn(ZT), n > 0, are 
computed up to rational isomorphism type. All of these results 
have previously been obtained by the authors in the case that 
the sectional curvature values of M are strictly negative (cf. 
[7, 8, 9, 10]). 

In all the following results we let M denote a compact con­
nected Riemannian manifold all of whose sectional curvature val­
ues are nonpositive, and we let T denote the fundamental group 
of M. 

Theorem 1. If h : TV —• M is a homotopy equivalence from a com­
pact closed manifold N, and if dim(M) > 5, then there is a ho­
motopy o f h to a homeomorphism. 

Let ^(M) denote the semisimplicial space of stable topologi­
cal pseudo-isotopies of M. For any stratified fibration p : E —• B 
we let &(E ; p) denote the semisimplicial space of compactly sup­
ported stable topological pseudo-isotopies on E which have arbi­
trarily small control in B (defined in [23]). If ƒ : E -> M is a 
continuous map then denote by F : &>(E\p) -» &>(M) the map 
which is induced by ƒ . 
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Theorem 2. There is a stratified fibration p : E -> B, each fiber of 
which is a circle, and a continuous map ƒ : E —• M. The induced 
map F : &{E\ p) —• &(M) is a homotopy equivalence. 

Let ^ ( S 1 ) denote the Q-spectrum defined as follows: ^0{Sl) 
= &>(Sl)\ ^(S1) is the ith loop space of ^ ( S 1 ) for any / < 0 ; 
^•(S1) is the standard Zth delooping of ^(Sl) for any / > 
0 (cf. [17, Appendix II]). We remark that &>(E\p) can be ef­
fectively computed from ^(Sl) and p : E -+ B\ for example 
nk{^ö{E\p)) is equal to the /cth homology group of B with 
"stratified and twisted coefficients" ^ ( S 1 ) , where the stratifica­
tion and twisting of the coefficients ^{Sl) is induced by that of 
the fibration p : E —• B (cf. [23, Appendix]). This points out the 
importance of understanding the fibration p : E —• 5 of Theorem 
2. 

If M has strictly negative sectional curvature values then B 
of Theorem 2 is a countable infinite discrete space. (This version 
of Theorem 2 was proven by the authors in [8].) In general the 
p:E-+Bof Theorem 2 is obtained as follows. Let S(M) and 
RP(M) denote the unit sphere bundle of M and the real pro­
jective bundle for M. The orbits of the geodesic flow on S(M) 
cover the leaves of a one-dimensional foliation *& for RP(M). 
For each t > 0 let Et denote the union of all the closed leaves of 
9 which have length less than or equal to t, and let pt : Et-+ Bt 

denote the quotient map obtained by collapsing each closed leaf 
in Et to a point. Finally let p : E —> B denote the direct limit 
as t —• oo of the maps pt : Et-+Bt. Let ƒ : E —• M denote the 

direct limit of the composite maps Et -^-> RP(M) -£2L> M. 

CALCULATION OF THE L-GROUPS 

Let I denote the /c-dimensional cube. There is a more gen­
eral version of Theorem 1 which states that any homotopy equiva­
lence h : (N, ON) —• (Mxlk , Mxdlk) from the compact man­
ifold pair (N, a AT)—such that h: dN -+ M xdlk is already a 
homeomorphism—can be homotoped to a homeomorphism mod­
ulo h\dN, provided that dim(Af) + k > 5. This more general 
version of Theorem 1 has as a consequence that the surgery ho-
momorphism 

0 : [ M x / r e l ^ G / T O P l ^ L ^ r , ^ ) 
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is an isomorphism, provided that m + k > 5 and k > 0. (Here 
w{ : T —• Z2 is the homomorphism determined by the first Stief el-
Whitney class of M , m - dim(M), and Lm+k(T, wx) is the 
(m + /c)-dimensional surgery group for F with orientation data 
wx which is defined in [26].) 

CALCULATION OF THE A^-GROUPS AND WHITEHEAD GROUPS 

Let R denote /c-dimensional Euclidean space. There is the 
following more general version of Theorem 2. Let £Pb{M x R ) 
denote the semisimplicial space of all stable topological pseudo-
isotopies on M x Rk which are bounded in the R -factor. Let 
9ö

h (E ; p) denote the semisimplicial space of all stable topological 
pseudo-isotopies on E x Rk which are bounded in the i?^-factor 
and which have arbitrary small control in B (with respect to the 

composite projection E x R pr0J > E -£-* B ). Then ƒ : E —• M 

induces a homotopy equivalence Fk : &%(E ; p) —• &b(M x Rk). 
This more general version of Theorem 2 has the following con­
sequences (which can be deduced from it as in [8 and 9, Ap­
pendix]): Whn(T) 0 Z(l/N) = 0, for any n > 1 and JV = 
[(/i + l)/2]! ; Kn(ZT) = 0 for any n < 0; K0(ZT) = 0; Kn{ZT) 0 
Q = Hn(M9 Q) 0 ( 0 ^ Hn_x_Ai(M9 Q)) for any n . 

THE SPACE OF SELF HOMEOMORPHISMS OF M 

Let H(M) denote the space of self homeomorphisms of M, 
and let g : H (M) —• Out(T) denote the forgetful map to the outer-
automorphism group of T. Note that Theorem 1 implies that g is 
onto. Let H0(M) denote the kernel of g. Then if m > 10 (where 
m = dim(M)), and if n, N are integers with 0 < n < (m - 7)/3 
and N = [(n + 4)/2]!, we have that 

Remark. The reader is referred to the following references: to [6, 
9, 10, 15] for results related to Theorem 1; to [8, 21, 25] for re­
sults related to Theorem 2; to [5, 9, 10, 15] for results related to 
the L-group calculations; to [4, 7, 8, 14, 18, 21, 24] for results 
related to the AT-group and Whitehead group calculations. To ob­
tain their results the author used in an important way results from 
the following references: [3, 5, 17, 19, 20, 21, 22, 23, 25, 26]. 

Proofs of Theorems 1 and 2. The proofs for Theorems 1 and 2 are 
similar in spirit to the proofs of these same theorems given in [7, 8, 
9, 10] for the special case when M has strictly negative sectional 
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curvature values. However, there are several important technical 
differences, one of which we will discuss now in the context of the 
proof for Theorem 1. 

To prove Theorem 1 for M of strictly negative sectional cur­
vature the authors use in [9, 10] a foliated control theorem for 
structure sets, where the foliations have the following important 
properties: 

(a) The leaves have dimension one. 
(b) For any a > 0 there are only finitely many leaves which 

have length less than a. 

This type of foliated control theorem unfortunately does not apply 
to the relevant foliations when M is allowed to have some zero 
sectional curvature values. (For example there are whole contin­
uous families of closed orbits of bounded length for the geodesic 
flow on the unit sphere bundle of the torus Tn . So this folia­
tion doesn't satisfy (b) above.) We have therefore had to extend 
the foliated control theory for structure sets used in [9, 10]. The 
following extension is proven in [12]. 

Let N denote a compact closed smooth manifold and let S? de-
note a C foliation of N by one-dimensional leaves. Let p : E —> 
N denote a fiber bundle over TV which has a compact closed man­
ifold for fiber. Let h : X —• E denote a homotopy equivalence 
from the compact closed manifold X. We refer the reader to [12, 
13] for the meaning of h being (a, e)-controlled over (N, ^) 
for numbers a , e > 0. See [12, Appendix] for a proof of the 
following theorem. 

Theorem 3. There is an integer k > 0 which depends only on 
dim(iV). Given any a > 0 there is e > 0. If the homotopy 
equivalence h: X —• E is (a, e)-controlled over (N9^) then 
there is a homotopy Ht: X x Tk -+ E x Tk, t e [0 ,1] , of 
h x I : X x T —• E x T to a map H{ which is split over a 

triangulation of N (here 1 : T —• T is the identity map on the 
k-dimensional torus). 
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