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Let M be a closed compact oriented Riemannian surface. The Euler 
number of M, #(Af), is given by £(-1)' 'dim #<(.*ƒ; tf), where Hl{M\K) 
is the Zth de Rham cohomology group of M. This integer determines M 
up to diffeomorphism. The Gauss-Bonnet theorem states that 

X(M)= [ (1/2*)Q 
JM 

where Q is the curvature of the Levi-Civita connection on the tangent 
bundle of M. Now rf[(l/27r)£2] = 0 so it defines a cohomology class on 
M, its Euler class, and we may interpret the theorem as saying that the 
Euler number of M (an analytic invariant) is given by the integral over M 
of a certain characteristic cohomology class (a topological invariant). 

This simple theorem is at once the genesis and a paradigm for the index 
theory of elliptic operators, a theory which relates topological invariants of 
differential structures on the one hand to analytical invariants on the other. 
The central theorem in this theory is the Atiyah-Singer index theorem 
[AS]. Briefly, it says the following. Let M be a closed compact oriented 
manifold, let E — (EQ, E\,..., E^) be a family of complex vector bundles 
over M, and let d = (do, d\,..., <4-i) be a family of differential operators, 
dt mapping sections of Et to sections of 2?/+i- Suppose that di • di-\ — 
0 and that the differential complex (E, d) satisfies a technical condition 
called ellipticity. Roughly speaking, ellipticity means that the associated 
Laplacians (see below) differentiate in all possible directions. Ellipticity 
implies, among other things, that for all i, H'(E,d) = kerrf,-/ imagerf,-_i 
is a finite dimensional vector space. Define the index of (E, d) to be 

k 

I(E,d) = J^{-\y AimWiE^). 
i=0 
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The Atiyah-Singer theorem relates this integer invariant to the integral over 
M of certain characteristic cohomology classes. Specifically, it states that 

I(E,d)= f yrl[ch(E)]-td(M) 
JM 

where td(M) is the Todd class of TM, the tangent bundle of M, (a charac­
teristic de Rham cohomology class on M), ch(E) is the Chern character of 
a virtual bundle on TM constructed from (E, d), (a characteristic de Rham 
class on TM), and y/ : H*(M; R) -> H*(TM; R) is the Thorn isomorphism. 

This theorem encompasses the Gauss-Bonnet theorem, the Riemann-
Roch theorem, the spinor index theorem, and the signature theorem. Its 
extension to G invariant operators (G a compact Lie group) is called the 
G index theorem and it generalizes the Lefschetz fixed point theorem to 
general elliptic complexes. The index theorem and its generalizations have 
been enormously useful in topology, geometry, physics and representation 
theory. 

As befits a theorem of such depth and generality, the index theorem 
has several proofs using different techniques. The original proof [P] was 
modeled on Hirzebruch's proof of the Riemann-Roch theorem. This proof 
used cobordism and did not lend itself to certain natural generalizations 
where the appropriate cobordism groups were not known. The proof in 
[AS] was modeled on Grothendieck's proof of Riemann-Roch and used 
üT-theory in place of cobordism. There is a third proof based on the heat 
equation method, [ABP, G1], and this proof has led to further general­
izations of the Atiyah-Singer theorem, most notably to index theorems on 
open manifolds [R], to local index theorems, references below, to index 
theory for operators defined along the leaves of a foliated manifold (the 
work of A. Connes), and to Lefschetz theory on foliated manifolds [HL]. 

The heat equation proof of the classical index theorem proceeds as fol­
lows. On each Et choose an Hermitian metric and use these metrics to con­
struct the adjoints d* of the du The /th Laplacian A,- = d*di-\-di-\d*_x of 
(E, d) is then an operator acting on smooth sections of is,-, and it extends to 
a densely defined unbounded operator on L2(Ei), the L2 sections of Eu In 
addition, it is self adjoint, nonnegative and has spectrum 0 = Ao < Ai < • • •. 
Ellipticity implies that the eigenspace E(i,j) of L2(Ej) corresponding to 
kj is finite dimensional. As di • A/ = A/+i • du di(E(i, j)) c E(i + 1, j), and 
for j > 0, it is easy to check that the sequence 

(**) . . . ^ £ ( U ) A £ ( i + i ,y)->..• 

is exact. For j = 0, we have E(if0) — kerA, which by Hodge theory 
is isomorphic to Hl(E,d). Now L2(Ei) = Q)jE(i,j), and if we de­
fine exp(-jA/): L2(Ei) —• L2(Ei) by exp(-fA/)|is(/,,ƒ) is multiplication 
by exp(-fAy), we obtain an operator of trace class, i.e. 

oo 

tr[exp(-fA/)] = y^ exp(-fA7-) dim E(i, j) < oo. 
7=0 
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Note that lim^00tr[exp(-rA/)] = dim£(/,0) = dim J/'(JE, rf). Thus 
k 

^ ^ ( - l j ' t r l e x p l ^ A / ) ] = I(E,d). 
~*°° 1=0 

In fact, X /̂LoC""̂ )' trlexP("~'A/)] *s independent of f. To see this, note that 
the exact sequences (**) imply that for fixed t, and j > 0, 

k 

J2(-iyexp(~aj)dimE(i,j) « 0. 
/=0 

Thus 
k oo 

£ £ ( - l ) ' e x p ( - r t y ) d i m £ ( / J ) = 0, 
/«0 7=1 

and so we have 
fc k oo 

£(-l) ' tr[exp(-fA,)] = ££( - l )<exp( -d , )< i im2?(U) 
1=0 1=0 7=0 

A: 

= ^ ( ~ l ) / d i m £ ( / , 0 ) = ƒ(£,</). 
/=0 

The index theorem is then established by considering the behavior of 
tr[exp(-/A/)] as t —• 0. The operator exp(-/A/) is a smoothing operator 
on L2{Ei) so it has a smooth Schwartz kernel Kiit(x, y). That is, Kitt(x, y) 
is a smooth section of the bundle Hom(2?/, 2?,-) over M x M and for any 
section 5 of JE"/, 

[cxp(-*A/)$](x) = / #/,,(*, y M y ) ^ , 

where dy is the volume form of the metric on M. Tr[exp(-fA,)] is 
then given by jM[\rKitt{y,y)]dy. (Note that the particular section of 
Hom(J?,-,l?/) which represents exp(-/A/) depends on the metric on M9 
but the integral fM[trKjtt(y, y)]dy does not.) 

Now as t -> 0, exp(-fA/) -* Id and Kj>t{x, y) is converging to Si>x(y), 
a Dirac section of Hom(2?,,Eg). Thus for / small, exp(-fA,) is essen­
tially a local operator, that is, modulo a rapidly decreasing (in t) error, 
[exp(-tAi)s](x) depends only on s is a neighborhood of x. It is thus 
reasonable to expect that for t small, K^(xt y) can be approximated rea­
sonably well by a kernel constructed out of local data and that as t -» 0, 
this approximation gets better and better. This is in fact true and leads 
to an asymptotic expansion for \r[Kitt(y, y)] whose coefficients are locally 
computable as functions of the coefficients of the A,- and the metrics on 
M and the bundles Eh [S, MP]. As 

r k 

i(E,d)= / 2>i) ' tr[tf, . ,(y,y)]rfy 
JM /=0 

and the left-hand side is independent of t, the alternating sum of the zeroth 
order terms in the asymptotic expansions must also yield I(E,d) when 
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integrated over M. It was Gilkey [G2] and Patodi [Pt] who showed, using 
invariant theory, that for the classical complexes this locally constructed 
differential form represents the de Rham cohomology class given in the 
Atiyah-Singer recipe. The proof is then finished by showing that in a 
suitable sense, namely ^-theory, the classical elliptic complexes generate 
all the elliptic complexes. (Recently, Getzler [Gz], Bismut [B], Berline and 
Vergne [BV], and Donnelly [D] have shown how to prove directly that for 
the classical operators, the integrand in question represents the Atiyah-
Singer class.) 

The book of Moore and Schochet is an exposition of the work of Alain 
Connes on the extension of index theory to operators defined along the 
leaves of a foliated manifold. Connes* proof of course uses the heat equa­
tion method. 

Let F be a p dimensional foliation of an m dimensional compact Rie-
mannian manifold M and, for simplicity, assume that M and F are ori­
ented. F is a partition of M into p dimensional submanifolds (called 
the leaves of F) which locally looks like a family of parallel p planes in 
Rm. Globally the behavior of the leaves can be quite complicated and 
in general they are not compact submanifolds. As above, let (E, d) be 
a differential complex over M. The dt are now required to differentiate 
only in directions tangent to the leaves and the restriction of the com­
plex to each leaf is required to be elliptic. Let L be a leaf of F and Ai>L 
the /th Laplacian of the complex restricted to L. As L is not necessar­
ily compact, we cannot conclude that ker(A/,/,) is finite dimensional, nor 
that A(tL has discrete spectrum. However, it is still possible to prove an 
index theorem using the heat equation method. The operator exp(-fA/,i,) 
is still defined (by the spectral mapping theorem) and it has a smooth 
Schwartz kernel, denoted Ki>ttt{xt y)> with respect to the volume form dy 
induced on L by the metric on M. As t -+ 0, \r[Kittx{y> y)] still has an 
asymptotic expansion whose coefficients are locally computable and are the 
same as in the classical case. At t -> oo, exp(-^A/L) converges to PIL the 
projection onto ker(A,x) and P/L has a smooth Schwartz kernel, denoted 
Pu(x,y). 

To state Connes' index theorem we now need some way to amalgamate 
the information on individual leaves. This is where invariant transverse 
measures enter the picture. Simply put, a transverse measure du on M 
assigns a measure to each m - p dimensional submanifold of M which 
is transverse to the leaves of F. To say that the transverse measure is 
invariant means that the measure assigned to a transverse submanifold 
remains unchanged if the submanifold is deformed by a shear along the 
leaves of F. 

Now each leaf L has the volume form dy induced by the metric on M. 
This leafwise measure combined with the transverse measure produces a 
measure dy du on M. Define the Connes' index of (E, d) by 

r k 

Ic(E>d)= / ^(-lyniPuiy.yïïdydu. 
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The Connes' index theorem then states that 

Ic(E,d)= f i//-l[ch(E)]\d(F)du 
JM 

where td(F) is the Todd class of the tangent bundle TF of F, ch(E) is the 
Chern character of a virtual bundle over TF constructed out of (E, d), and 
y/: H*(M,R) -> H*(TF,R) is the Thorn isomorphism. To evaluate this 
integral, let w be a differential form on M representing y/~l[ch(E)]td(F), 
and let wp be its p dimensional part. As the leaves of F are oriented, we 
may view wp as a measure on each leaf. Combine this measure with du 
to obtain a measure on M. Integrate this measure. 

In outline, the proof of the theorem is essentially the same as in the 
classical case. One shows that 

r k 

/ ^(-lYtxlKuLly.yndydu, 

is independent of /, that its limit as t —• oo is Ic(E,d), and its limit as 
t -> 0 is fM y/~l[ch(E)] • td(F)du. 

Of course, there are a number of rather deep technical difficulties to be 
overcome. The quest for the proof leads through functional analysis, C* 
and von Neumann algebras, topological groupoids, characteristic classes 
and AT-theory along a foliation, and the theory of pseudodifferential op­
erators. It is a long but very rewarding journey and Moore and Schochet 
have performed a valuable service in putting all this material in one place 
in an easily readable form. As their approach is quite general (some may 
feel that it is too general in spots) the book contains a wealth of informa­
tion. It is not for those who wish an overview of the index theorem on 
foliated manifolds. However, for those wishing a comprehensive proof of 
Alain Connes' beautiful theorem, this book is indispensible. (For those 
who are already familiar with the material necessary to understand the 
statement of Connes' theorem, [R2] provides a short proof.) 
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The idea of constructing prescribed algebraic number fields by means 
of the values of real or complex functions is usually referred to as the 
'Jugendtraum,' a word used by Kronecker in an 1880 letter to Dedekind [8]. 
Hubert made the realization of this idea the twelfth problem of his 1900 
address [7], adding that he considered "... this problem as one of the most 
profound and far-reaching in the theory of numbers and of functions." In 
the present book, Cassou-Noguès and Taylor give an exposition of Taylor's 
recent work on an "integral Jugendtraum" for the rings of integers of ray 
class fields of imaginary quadratic fields. The object of this work is to 
construct by means of elliptic functions explicit generators of such rings 
of integers either as algebras or as Galois modules. 

The two examples which motivated the Jugendtraum were provided by 
the finite abelian extensions of either the rational numbers Q or of an imag­
inary quadratic field. By the Kronecker-Weber Theorem, every abelian 
extension of Q is contained in a cyclotomic field of the form Q(C«), where 
£n = Qxp(2ni/n) is a primitive nth root of unity for some positive integer 
n. Thus the values of the function e(z) = exp(27r/z) at rational z generate 
all abelian extensions of Q. One can view these z as the points of finite 
order on the one-dimensional real torus R/Z. Suppose now that Q is re­
placed by an imaginary quadratic field K. In this case the torus R/Z may 
be replaced by a two-dimensional torus C/Q, where Q is a nonzero ideal 
of @K and we view A' as a fixed subfield of C. An elliptic function for 
C/Q is a meromorphic function of z e C whose value at z depends only 
on z modQ. A division point of C/Q is a point of finite order on C/Q. 
By work of Weber, Feuter and Hasse, there are elliptic functions for C/Q 
such that every abelian extension of K is contained in a ray class field gen­
erated over K by the values of these functions at suitable division points. 
There are different combinations of elliptic functions which generate the 


