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SINGULAR SOBOLEV CONNECTIONS WITH HOLONOMY 

L. M. SIBNER AND R. J. SIBNER 

We consider local Sobolev connections on SU(2) bundles over the com­
plement, in R4, of a smoothly embedded compact 2-manifold. Finite action 
implies that a holonomy condition is satisfied and we obtain an a priori esti­
mate for the connection 1-form in terms of curvature and the flat connection 
carrying the holonomy. The a priori estimate classifies the possible singulari­
ties in these connections by the set of flat connections. In a certain case, this 
leads to smoothness and extendability results. 

Let N be a full 4-dimensional neighborhood of the singular set S. The 
objects of study are connections D = d + A defined on SU(2) bundles over 
X = N\S. We assume that A € H2

loc(X) and that the action is finite, i.e., 
the curvature F = dA + A A A is in L2(N). 

The following holonomy condition was first stated by Cliff Taubes. Choose 
coordinates (r, 0, u, v) with (u, v) coordinates on S and (r, 9) coordinates in a 
plane normal to S. Fixing u and v, and denoting by Ae the 6 component of 
A, the initial value problem for an SU(2) valued function, 

^ + A ^ r = 0 , 0r(O) = J, 

has a unique solution gr(Q), with gr{27r) = Jr G SU(2). The holonomy 
condition we require is 

(H) lim Jr — Jb exists. 
r—•() 

This condition is gauge invariant up to conjugacy in SU(2). Our results can 
be formulated in two theorems. 

THEOREM 1. If A and F are smooth on N\S and F G L2(N), then (H) 
is satisfied for almost all u and v. Up to conjugacy, the limit is independent 
of u and v. 

Next, assume (H) holds. Locally, the conjugacy class [ Jb] G SU(2) uniquely 
defines a flat connection Ab = C dO with G a constant element of su{2) deter­
mined up to a similarity transformation. Our second result uses holonomy to 
obtain an a priori estimate. We denote by XQ and AT0 the intersections of X 
and N with a small open set in R4 having nonvoid intersection with S. 
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THEOREM 2. Suppose D = d + A satisfies (H) with A G H*loc(X0) and 
||^ ,||L2(7V0) sufficiently small Then there is a flat connection A^ determined by 
[ Jb] , and a universal constant K, such that D is gauge equivalent to D = d-\-A, 
with d*A = 0 and 

\\A-A>\\H>{No)<K\\F\\LHNo). 

Note that if [Jb] = / , then A is gauge equivalent to the zero connection 
form. In this case, D extends as an H\ connection to all of N0. If, in addition, 
field equations are satisfied, more smoothness follows from elliptic theory. 

Theorem 1 is proved by making a good choice of gauge in which the Fourier 
coefficients of AQ can be estimated in terms of F. These estimates can be used 
to show that A$ dO converges to a flat connection as r tends to zero. This flat 
connection carries the holonomy. To show that the limit is independent of u 
and v requires another good choice of gauge and Stokes' theorem. 

To prove Theorem 2, we carry out a plan of attack suggested by Cliff 
Taubes. This involves an open-closed argument similar to that used in [Ui, 
Theorem 1.3]. The large space consists of the appropriate Sobolev space of 
connections satisfying the same holonomy condition. This space is shown to 
be connected. The subspace consists of connections which admit a Hodge 
gauge satisfying certain boundary and limiting conditions which imply the a 
priori estimate. (Detailed proofs will appear in a forthcoming article.) 

Theorem 1 settles a conjecture of Atiyah's. Both theorems are related to 
recent work on the moduli space of magnetic monopoles over hyperbolic 3-
space [A, B , C, F] and to Yang-Mills fields over S4 whose topological charge 
is not integral [FHi,FH 2 ] . 
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