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PREFACE 

This article was widely circulated as a preprint, about 12 years ago. At that 
time the Bulletin did not accept research announcements, and after a couple 
of attempts to publish it, I gave up, and the preprint did not find a home. I 
very soon saw that there were many ramifications of this theory, and I talked 
extensively about it in a number of places. One year I devoted my graduate 
course to this theory, and notes of Bill Floyd and Michael Handel from that 
course were circulated for a while. The participants in a seminar at Orsay in 
1976-1977 went over this material, and wrote a volume [FLP] including some 
original material as well. Another good general reference, from a somewhat 
different point of view, is a set of notes of lectures by A. Casson, taken by 
S. Bleiler [CasBlei]. 

There are by now several alternative ways to develop the classification 
of diffeomorphisms of surfaces described here. At the time I originally dis
covered the classification of diffeomorphism of surfaces, I was unfamiliar with 
two bodies of mathematics which were quite relevant: first, Riemann surfaces, 
quasiconformal maps and Teichmiiller's theory; and second, Nielsen's theory 
of the dynamical behavior of surface at infinity, and his near-understanding of 
geodesic laminations. After hearing about the classification of surface auto
morphisms from the point of view of the space of measured foliations, Lipman 
Bers [Bersl] developed a proof of the classification of surface automorphisms 
from the point of view of Teichmüller theory, generalizing Teichmiiller's the
orem by allowing the Riemann surface to vary as well as the map. Dennis 
Sullivan first told me of some neglected articles by Nielsen which might be 
relevant. This point of view has been discussed by R. Miller, J. Gilman, 
M. Handel and me. 

The analogous theory, of measured laminations and 2-dimensional train 
tracks in three dimensions, has been considerable development. This has 
been applied to reinterpret some of Haken's work, to classify incompressible 
surfaces in particular classes of 3-manifolds in papers by me, Hatcher, Floyd, 
Oertel and others in various combinations. Shalen, Morgan, Culler and others 
have developed the related theory of groups acting on trees, and its relation 
to measured laminations, to define and analyze compactifications of represen
tation spaces of groups in SL(2, C) and SO(n, 1); this has many interesting 
applications, including the theory of incompressible surfaces in 3-manifolds. 
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Recently, Bestvina and Handel have developed a classification of automor
phisms of the free group analogous to the classification of automorphisms of 
the fundamental group of a surface. 

Kerckhoff proved in his thesis that the modular group does not in general 
extend continuously to the Teichmüller boundary of Teichmüller space. Ker
ckhoff and I later proved that the modular group does not in general extend 
continuously to the Bers boundary for Teichmüller space. In particular, it 
follows that the measured foliation compactification defined here is in general 
different from these two compactifications. 

The literature on this subject is now quite large, and I cannot even touch on 
all aspects of it here, such as algorithms, noncompact surfaces, handlebodies, 
measure theory, hyperbolic three-manifolds, etc. 

There would be no simple stopping point if I began to incorporate the more 
recent developments in the original paper, so it is being published here in the 
original form. 

The bibliography below is not exhaustive, and was not systematically as
sembled, so that inclusion or noninclusion of a paper should not be taken as 
an indication of quality or relevance of the content. Nonetheless, I hope that 
it will be useful. 
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1. This paper is a description of some results about diffeomorphisms of 
surfaces, and the topology of surfaces. "Surface", in this paper, will mean a 
compact, connected surface, unless otherwise noted. Most of the proofs are 
deferred to the future. 

If M is a surface, we will denote by S^{M) the set of all isotopy classes of 
two-sided simple closed curves on M, not bounding a disk and not isotopic 
to M. It is easy to see that, for most surfaces, elements of <5^{M) can be 
quite complicated (cf. Figure 1). In working with simple closed curves, one 
gets the sense of some geometric concept of "nearness" among them, not 
closely related to the homotopy class, but having to do with how many strands 
pass around in a certain direction. We will shortly formalize such a concept, 
defining a completion of J5^(M), to be denoted £P<5*(M). It turns out that 
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&S?{M) is homeomorphic to a sphere, and S* (M) consists of a dense set of 
"rational" points on this sphere. From the coordinates of such a point, the 
corresponding simple closed curve can be drawn, rather mechanically, and 
quickly by a computer. 

FIGURE 1. A typical simple closed curve on a surface is 
complicated, from the point of view of someone tracing 
out the curve. 

^L5^(M) has two other interpretations. First, it is the space consisting of 
all equivalence classes of "measured foliations" on M (see §3). Second, it forms 
a boundary for the Teichmüller space of M, to which the action of the group 
of diffeomorphisms of M extends. 

With the aid of this tool, a canonical representative is found for every 
isotopy class of diffeomorphisms of M, well-defined up to conjugacy by dif
feomorphisms isotopic to the identity. 

2. We denote by Mh,b,c the surface obtained from the sphere S2 by con
nected sum with h tori, b disks and c projective spaces. We will sometimes 
use M% to mean M% 0 0. 

The classification of surfaces says that every surface is an M% b c ; that 
M2

yz+1+2k is synonymous with M^+fe + 1 ; and that these are all the rela
tions. 

If a and /? are two members of J5^, we let i(a,f3) denote their geometric in
tersection number, i.e., the minimum number of intersections of simple curves 
representing a and ft. 

PROPOSITION. (1) For every aeS* there is a f3 e 5? such that i(a, 0) ^ 
0. 

(2) For every pair of distinct a, o?2 G S*, there is a (3 G S? such that 

The map i: S? x S? —• R gives a map u : & ~• R ^ . In light of the 
proposition, i* (S") c R ^ — 0. We regard R ^ as a topological vector space 
with the product topology. There is an associated projective space P ( R ^ ) , 
with a projection 

P : R ^ - 0 - + P ( R ^ ) . 

P ( R ^ ) is given the quotient topology. 
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For fairly general reasons, Poi^S?) c P ( R ^ ) has a compact closure. We 
denote this closure ^5*(M£6 j C) . 

It is immediate from the definition that the correspondence M v-+ £PS?{M) 
is natural, so that a diffeomorphism 0 of M induces a homeomorphism ^^{(j)) 
of 3P5?. It is also immediate that ^5^(0) depends only on the isotopy class 
of 0. 

We denote by S^'(M) the set of isotopy classes of nonempty unions of 
disjoint two-sided simple closed curves on M, none of which bounds a disk 
and none of which are isotopic to dM. Geometric intersection number, and 
the space £PS?\ are defined just as for 5?. 

THEOREM l . The space &9*(M) is equal to &S?(M), and is topologi-
cally a sphere. Ifx(M) < 0 then the dimension of this sphere is6h+2b+3c-7. 
(A sphere of dimension —1 is thought of as the empty set 0.) The seven ex
ceptional cases when M = Mh,b,c has Euler characteristic xiM) > 0 can be 
tabulated as follows: 

common name h b c (Mh,b,c) 

Sphere 0 0 0 0 
Projective space 0 0 1 0 
Klein bottle 0 0 2 S° 
Disk 0 1 0 0 
Moebius band 0 1 1 0 
Annulus 0 2 0 0 
Torus 1 0 0 S1 

The spaces ïPS? may be interesting in the study of three-manifolds. For 
instance, every handlebody decomposition h of genus g of a three-manifold 
determines an element of S?' (the system of curves along which disks are 
attached), and hence, a point on &S*\ 

3. Next we define a type of foliation with singularities on M, which we 
call a "measured foliation". In some neighborhood U of a regular point of a 
measured foliation & there must be a "flow box" or a chart <j>: U —• R2, which 
sends the leaves of SF to horizontal lines in R2 . If two such neighborhoods U{ 
and Uj overlap, there should be a transition function fcj defined on (j)j{Uj) 
such that (/>ij o <j>j = ^ , on Ui C\ Uj, with the property that fcj is of the form 

<t>ij(x,y) = (/(x,2/),c±y), 

where c is a constant. In other words, the transition functions preserve the 
distances between ^-coordinates of points. A finite number of singular points 
are permitted, where the singularities are "p-pronged saddles", with p > 3. 
Cf. Figure 2. 

If M has boundary, we require that each boundary component of M have 
at least one singularity of the measured foliation. Near nonsingular points of 
dM, the boundary is a leaf. Cf. Figure 3. 

A neighborhood of a p-pronged saddle may be obtained from p rectangles, 
glued together along edges. It is most natural to think of the singularity of 
the foliation as corresponding to a singularity in the differentiable structure of 
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FIGURE 2. A neighborhood of a 3-pronged singularity 
of a measured foliation. This may be obtained by gluing 
together the left and right halves of the bottom edges of 
three rectangles, in an appropriate pattern. 

FIGURE 3. A neighborhood of a typical singularity of a 
measured foliation on dM. 

the surface. This singularity has the type of a cone of cone angle p7r, that is, a 
deleted neighborhood of the cone point has universal cover identified with the 
universal cover of a deleted neighborhood of the origin in R2 , and the whole 
angle around the cone point is pit. It makes sense to speak of a diffeomorphism, 
in this singular differentiable structure, as being a homeomorphism which is 
a diffeomorphism away from the singularities, and in a neighborhood of each 
singular point it is related to a diffeomorphism of R2 via the identification 
of the universal cover of the deleted neighborhood of the singularity with the 
universal cover of a deleted neighborhood of the origin in R2 . A singularity 
on the boundary of a surface, similarly, corresponds to a singularity in the 
differentiable structure of the surface which is like half a cone. 

If & is a measured foliation and a is a simple closed surve, we define fa & 
to be the total variation of the ^-coordinates of a, as measured locally with 
respect to any chart. If f3 € J?*, we define i{&', /?) to be the infimum of Jb<^, 
where b is a simple closed curve representing (3. 
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Two measured foliations &[ and ^ are measure equivalent if for all (3 G S?, 

Two measured foliations <9Ï and ^ are protectively equivalent if p o ̂ ^ = 
p o û ^ , i.e., if there is a A € R such that for all a G c5^, 

i(5^,o;) = Ai(«?2, a). 

PROPOSITION. For every measured foliation & there is a (3 G S? such 
that i(&, /?) ^ 0 . 

As before, i defines a map n from the set of measured foliations to R. We 
define «9^" = {po û(<^")|<^"is a measured foliation}. 

THEOREM 2. ^ ^ = &S?. In other words, the topological sphere &>S"{M) 
can be identified with the set consisting of all projective equivalence classes of 
measured foliations on M. 

FIGURE 4. A portion of a pseudosphere, which extends 
to infinity at the thin end. A pseudosphere is a surface 
of revolution of Gaussian curvature - 1 . The generating 
curve is a tractrix, which is characterized by the property 
that its tangent lines meet the x-axis a unit distance from 
the point of tangency. 

4. To avoid special cases, we now restrict ourselves to the case xO&O < 0. 
Such a surface always has Riemannian metrics with curvature —1. We will 
say that two Riemannian metrics Q\ and g<i are isotopic if g\ comes from g<i 
via a diffeomorphism isotopic to the identity. If M is closed, the TeichmüUer 
space y (M) can be defined as the set of isotopy classes of all Riemannian 
metrics of curvature - 1 . If M has boundary, £T(M) is the set of isotopy 
classes of Riemannian metrics of curvature —1 on the interior of M which are 
modelled on the thin end of a pseudosphere (cf. Figure 4) near a boundary 
component. Such a metric will be called a hyperbolic metric. An alternative 
characterization is that a hyperbolic metric is a complete metric with K = — 1 
and finite total volume. If 7 G ^{M) and a G S?, define 2(7, a) to be 
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the infimum of the length of a simple closed curve, a, representing a. (It 
is classical that there is a unique closed geodesic representing a; this geodesic 
has length 2(7, a).) Two hyperbolic metrics g\ and g^ are isotopic if for every 
a € J?*7, i(gi,a) = 2(02,a). We endow ^(M) with the minimum topology 
such that each function 2(7, a) is continuous. We now have a continuous map 
p o ù : ^ ( M ) - + P ( R ^ ) . 

THEOREM 3. The closure ofpoi^(M)) ispoi^(,9r(M))U^9?. This 
gives a natural topology to 3^[M) U £PS? in which it is homeomorphic to a 
disk £>6<H-26+3C-6 

It has been known since Fricke that £T(M) is homeomorphic to the interior 
of a disk. There are several interesting compactifications of ^"(M), but the 
action of the group of diffeomorphisms of M is not yet known to extend to 
the other boundaries. 

We use the terminology 3^{M) for the closed Teichmüller space £T{M) U 

COROLLARY. If <\> is any diffeomorphism of M, either 
(a) <j> fixes an element of the Teichmüller space, or 
(b) <\> fixes a projective class of measured foliations. 
In case (a), it follows (by definition) that there is a Riemannian metric g 

for which (j) is isotopic to an isometry </>''. Such a </>' has finite order. 

PROOF. Brouwer fixed point theorem on &~. 
For any subset F C J?7, let Kp C P ( R ^ ) be the set consisting of points 

of the form p(ƒ) where ƒ G R ^ vanishes identically on F. If F is big enough, 
then 3PS? D KF = 0 . There is a natural projection TTF: (P (R^) - KF) -> 
P ( R F ) inherited from projection of the vector spaces. For big enough (but still 
finite) F , IÏF/^0^ is an embedding in P ( R F ) . In other words, the preceding 
constructions would go through using an appropriately chosen finite subset 
of S?. This has the disadvantage that it is harder to see the map ^5^(<j>) 
induced by a diffeomorphism (j). 

£7~ has a natural smooth structure, since the image of ^ in R F , for big 
enough F , is a smooth submanifold. Unfortunately, the space &S? does not 
seem to have a natural smooth structure except in the cases when its dimen
sion is < 1. In the 1-dimensional case (M = Mi5o,o or M\,\$ or Mo,4,o) the 
map of P ( R F ) to itself obtained by squaring the coordinates in R F sends 
7TF(J7~) to a smooth submanifold, for sufficiently large F. This smooth struc
ture is classical. 

In general, however, £PS? has a kind of structure, a piecewise integral pro
jective structure, which is nicer for many purposes than a smooth structure. 
To define piecewise integral projective (or PIP for short), first define an inte
gral projective Aj-simplex in P n to be a set of the form p{{J2i=i U^i • U > 0})5 

where {ai} generates a maximal abelian rank k subgroup of Z n + 1 C R n + 1 . A 
PIP triangulation of a set K in P n is a cell division such that each cell is an in
tegral projective simplex. A PIP homeomorphism between two subsets K and 
L is a homeomorphism h such that K admits a PIP triangulation for which h 
restricted to any simplex is a transformation coming from GL(n, Z). Abstract 
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definitions, not depending on embeddings, can also be obtained easily. For big 
enough F, 7 T F ( ^ 5 ^ ) is a PIP submanifold of P ( R F ) , and the transformations 
1^5^(0) are PIP homeomorphisms. It is easy to see that the word problem is 
solvable in the group of PIP homeomorphisms of a compact manifold. Even 
better, the fixed point set of a PIP homeomorphism is effectively computable. 

5. Case (b) of the corollary requires further analysis according to the na
ture of the projective class of foliations fixed by âW((/>). 

We will say that (j) is reducible by T if T is a system of disjoint simple closed 
curves T i , . . . ,T n (n > 1), such that the I \ represent distinct elements of *5^, 
and T is invariant by 0 (but the Ti may be permuted). If </> is reducible, we 
may think of (j> as coming from the simpler surface (possibly nonconnected) 
obtained by cutting along T. There is an upper bound, depending only on M, 
to the number of such cuts which can be made. 

We will use the notation &Ï = A ^ if ^ and ^ agree as foliations, but 
for any arc a, 

[&1=\[&r
2. 

J ot J a 

Two measured foliations are transverse if they are transverse in the usual 
sense near regular points not on dM2. (Of course the two foliations must be 
tangent at nonsingular boundary points.) The typical picture near a singular
ity is given in Figure 5. 

FIGURE 5. A pair of transverse measured foliations in a 
neighborhood of a common 3-prong singularity. 

THEOREM 4. For any diffeomorphism 0 of a surface M2, (j> is isotopic to 
a diffeomorphism <\>' such that either: 

(i) <j)' fixes an element of !3~, and has finite order; or 
(ii) There is a number X > 1 and a pair of transverse measured foliations 

3rs and &u such that <\>\9rs) = \j\^9 and (j>,{Sru) = \9ru; or 
(iii) <j)' is reducible by a system of curves T. T has a (f)'-invariant tubu

lar neighborhood ^{T), such that on each (not necessarily connected) <\>'-
component of M2 —Jf(T), $ satisfies (i) or (ii). 
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The representative <\J of the isotopy class of(j) is determined up to conjugacy 
by the condition that it satisfies either (i) or (ii), or (iii) together with a simple 
restriction on its behavior iny^(T). 

In case (ii), the projective class of !FS and ^ u is uniquely determined. 

In case (ii), we mean that 0' is a diffeomorphism with respect to the singular 
differentiable structure determined by the foliations ^8 and ^u. It is a more 
delicate question whether <\>' is topologically conjugate to a diffeomorphism. 

Case (ii) is the typical case; we will call such a ^ ' a pseudo-Anosov dif
feomorphism. The dynamics of ^"(</>), the induced map on the disk ^ ( M ) , 
may be described very simply when <j> is isotopic to a pseudo-Anosov diffeo
morphism. ^~(<t>) has exactly two fixed points, represented by £F8 and ^ u . 
Every other point in ^{<j>) tends (rather quickly) toward ^ s under iterates 
of ^((/>). This dynamical situation is equivalent to case (ii). 

Here is a consequence of Theorem 5, using the theory of foliations of sur
faces: 

THEOREM 5. For any diffeomorphism </> of M, there is a finite set 1 < 
Ai < A2 < • • • < Afc of algebraic integers such that for any OLÇLS? there is a 
Xi such that for any Riemannian metric g, 

lim \i{g,<t>n<x)\lln=\i. 
n—>cyo 

<j> is isotopic to a pseudo-Anosov diffeomorphism iff k — 1 and X\ > 1. Ai 
may be identified with the A of Theorem 4 in case (ii). 

The Ai's may be thought of as eigenvectors in various ways. The simplest 
is the following. We suppose, for simplicity, that (j) is of type (ii). There is a 
finite set of singularities, {$i , . . . Sj}, of &~u where j < -2\{M). Let M be 
the unique 2-fold branched cover of M, branched along the singularities of 
odd multiplicity, for which the induced foliation 3FU is transversely oriented. 
Now, &~u defines a closed 1-form w o n M , which is nontrivial in cohomology. 
Let 0 be a diffeomorphism of M covering </>. Then, (jxj — ±Ao;, so ±A is an 
eigenvalue of the map induced by (f> on homology. 

One can obtain a bound for the degree of A as follows. An elementary index 
formula shows that there are at most 2\{M) singularities of ^ n , hence at 
most 4 — Ah — 2c + b singularities in the interior of M. Then 

X(M)2 > 2x(M) — # (interior singularities) 

> 8 - Sh - 4c - 36. 

The form w lies in V = H1(M2;dM2), whose dimension cannot exceed 6 — 
Sh - 4c — 2b. Let T be the deck transformation for M over M, so T2 = id. 
Let V+ and V_ be the eigenspaces for T* corresponding to eigenvalues H-I and 
—1. Then V+ is isomorphic to H1 (M; dM) so its dimension is 2h + c, and the 
dimension of V_ does not exceed 6—6/i—3c—26. UJ lies in V_, by definition, and 
V_ is an integral subspace invariant by 0* (since (j) commutes with T), so A is 
an eigenvector of a d x d integral matrix, where d is the dimension oî^(M). 
(This is no accident; a neighborhood of u in P(V_) gives local coordinates 
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for &&'.) Therefore A is an algebraic integer of degree < d. The examples 
of Theorem 7 show this bound is sharp. If M is oriented, (j>- = </>* \V- is a 
symplectic transformation. It follows that A + 1/A is an algebraic integer of 
degree < d/2. 

Another way to study A is via the theory of Markov partitions for (j). With 
this theory one obtains A as an eigenvector of a nonnegative integral matrix 
of bounded size. Hence the sequence of possible A's for a given surface is 
discrete. By studying Markov partitions it can also be shown that the number 
of possible conjugacy classes of pseudo-Anosov diffeomorphisms for any fixed 
A is finite. 

If (j) is of type (i), then obviously k = 1 and Ai = 1. If (j) is of type (iii), 
then Ai = 1, and the other A '̂s depend on the ^-components of M — (T). 

REMARK. Most of what has been said since the beginning of §4 remains true 
when x{M) > 0, with the appropriate definitions. When x(M) = 0, S^(M) 
can be identified with the set of isotopy classes of flat metrics of total area 1, 
and geodesic boundary. Theorem 3 remains true for the torus and Klein bottle, 
but is false for the annulus and Moebius band. When xC^O > 0, Theorem 3 
is true but vacuous. The corollary to Theorem 3, as well as Theorem 4 and 
Theorem 5, are true in all cases. 

Now let M be the universal covering of M, and let 0 be any homeomor-
phism of M covering 0. If M is given a hyperbolic metric, then M is isometric 
to the interior of the unit disk, with the Poincaré metric. This gives M a com-
pactification making it a disk, and </> extends to a homeomorphism of the 
disk. Nielsen analyzed this situation extensively, and described the possibili
ties for the dynamic behavior of the extension of 0 to the boundary of the disk. 
In particular, this induced map d(j) always has periodic points, with period 
p < 2 - x{MgXc) - b. 

This analysis can be derived from Theorem 4. The key fact needed is that 
if SF is a foliation on M induced from a measured foliation on M, each end 
of each leaf of & converges to a point on the boundary of the disk. If </> is 
pseudo-Anosov, then a lift </> can have at most one fixed point. If there are 
no fixed points, d<$> has one contracting and one expanding fixed point and 
positive iterates of <j> carry any point in M arbitrarily close to the contracting 
fixed point. If 0 has a fixed point x then the leaves of x in ^ u and ^ s must 
have a singularity at x, or no singularity at all. Let p = 2 if x is nonsingular, 
or the number of prongs of the singularity of ^ u if p is singular. d(j) has p 
contracting and p expanding periodic points, which use the limits of the leaf 
of x in ^ u and ^ s , respectively. These points are permuted the same way 
that (j> permutes the prongs of the singularity at x. An index argument (which 
Nielsen does rigorously) shows that if I/J is isotopic to </> and if \j) is the lift of 
V> corresponding to 0, then \j) must also have a fixed point. From this can be 
derived: 

THEOREM 6. /ƒ </> is a pseudo-Anosov diffeomorphism, (j) has the minimum 
number of periodic points {for every period) in its isotopy class. 
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On the other hand, Nielsen's analysis of the fixed point structure of dcf) can 
be used to give another derivation of Theorem 4. 

6. We will describe in detail an elementary construction for a large class 
of examples of diffeomorphisms in canonical form. For any two-sided simple 
closed curve a, a Dehn twist Ta about a is a diffeomorphism, supported 
in an annular neighborhood of a, which carries a short art crossing a to 
a long arc winding once around a towards the right. This depends on an 
orientation of M, but not of a. We extend this notation to S*' : if a G *$*', 
then Ta G 7To(Diff M) is the composition of Tai where ai ranges over the 
components of a. The order of composition is irrelevant. 

We will study the subgroup of 7To(Diff M) generated by two of these gen
eralized Dehn twists. If a and (3 are systems of curves representing members 
of J?7', we first isotope them so that \a fl f3\ =i(a,/3), in which case a and (3 
are tight. If a and (3 are tight, then a and (3 fill up M if each component of 
M — (a U f3) is a disk or a half-open annulus whose boundary lies on dM. 

Let the components of a and /3 be labelled OLJ and /?*, [j = 1 , . . . , n; k = 
1 , . . . , m). There is an n x m geometric intersection matrix with entries Nj^ = 
i{aj,fik)' It is easy to see that a U {3 is connected iff some power of NNf is 
strictly positive. In this case NNf has an eigenvector 

NN*V = fiV 

with all entries of V strictly positive. V is unique up to a positive multiple, 
and /i > 0. 

If we interchange the roles of a and /?, and hence interchange JV and Nf, 
note that the eigenvalue /J, remains unchanged, since the m-vector V1 = 
/i-1/2iV*V is strictly positive with 

tfNV1 =/iV r l . 

(The factor of /x"1/2 is chosen for the sake of symmetry so that V= ji"1^ NV1.) 

THEOREM 7. Suppose a and (3 are tight, and a U f3 is connected. Let 
G(a,(3) be the subgroup o/7To(Diff M) generated by Ta and Tp. There is a 
representation p ofG(a,(3) in PSL(2,R) given by 

'1 /iV2-
Ta = 

0 1 
and Ta = 1 0 

-M1 '2 1 

The image p(G(a,/3)) is a discrete group. For some k-Jold covering group 
PSL(2,R) /c, p lifts to a representation pk which is faithful. If a and 0 fill up 
M, then k is finite, and g EG is of type (i), (ii) or (iii) according to whether 
p(g) is elliptic, hyperbolic or parabolic. 

Full information without the hypothesis that a U (3 is connected can be 
derived from this statement, by looking at subsurfaces where the hypothesis 
is satisfied. 

We describe the construction in detail when a and (3 fill up M; otherwise, 
one can restrict to a subsurface filled up by a and (3. If M has boundary, 
attach a disk to each boundary component, a U (3 divides M into cells; let C 
be the dual cell division. Each 2-cell of C is a square. 
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Each 2-cell S of C contains a unique intersection point of a component 
aj of a and a component /?& of /3. Construct a flat Riemannian metric with 
singularities on M by making S a rectangle whose sides transverse to aj have 
length Vj, and whose sides transverse to /?* have length V^1. The rectangles 
intersecting aj string together to form a cylindrical neighborhood of aj of 
thickness Vj and height (NV^j = ^^{NN^j = »1/2Vj. Similarly, /?fc 

has a cylindrical neighborhood of thickness V£ and circumference / i 1 / 2 ^ 1 . 
There is a positively oriented orthogonal frame field e, well-defined up to ±1, 
whose first vector is parallel to the a-curves, and second vector parallel to 
the /^-curves. There is a unique affine transformation of M, with derivative 
(measured by e) 

[1 /i1^] 

L° l \ 
which fixes the tops and bottoms of the a cylinders. One can see this by 
using coordinates {(a;,2/)|0 < y < V(a, j3)j} for the universal cover of the 
aj cylinders. The linear map I1 ** fixes the x-axis and sends \v.\ to 

M Vj which is identified to \v.\ in the cylinder. This affine map Af (Ta) is 

representative of Ta. Similarly, there is an affine map Af(T^) with derivative 

[ 1 0] 
U"1 / 2 l j ' 

fixing the tops and bottoms of the ft cylinders, which represents Tp. 
If (j) is any element of the group of homeomorphisms generated by Af (Ta) 

and Af (T/j) then </> is an affine map with constant derivative. If d<\> is elliptic, 
there is a quadratic form invariant by d</>, or in other words, a flat Riemannian 
metric such that <f> is an isometry, and <\> is type (i). If d(j> is hyperbolic, the 
two eigenspaces of d(j> define two transverse measured foliations of M and <j> 
is type (ii). If d(j) is parabolic, then (/> has a one-dimensional eigenspace with 
eigenvalue 1. This eigenspace defines a foliation & invariant by (j). All the 
vertices of C are fixed by 0, so each leaf of &" through a vertex must be fixed 
by <j>. If (j) is not the identity, these leaves cannot have a point of accumulation, 
hence they are closed. «S*" is nonsingular in the complement of these leaves, 
so each component of the complement must be an open cylinder or Moebius 
band. The latter is ruled out because it has no nontrivial affine automorphisms 
fixed on the boundary, and we see that (j) is of the form T7 for some 7 E S?' 
(where 7 has one or more components corresponding to each cylinder). In 
particular, </> is of type (iii) when d(/> is parabolic. In any case, (j) is isotopic to 
the identity iff (j) is the identity, so Af extends to a homomorphism of G (a, (3) 
to Homeo(M). Therefore p= (do Af)/±ƒ is the desired representation. 

The group PSL(2,R) has an action on R 2 / (z ~ —x) coming from the 
linear action of SL(2,R) on R2 . The covering group PSL(2,R)fc is the group 
of transformations of the A;-fold covering of R 2 / (x ~ —x) branched at 0, 
which cover transformations in PSL(2,R). Each vertex of C is fixed by the 
group generated by Af(G(a,/?)), and a neighborhood of such a vertex looks 
like a /c-fold branched covering of R 2 / x ~ — x. The action near such a vertex 
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defines a lifting pk of p. For each vertex, this representation pk is faithful, 
since whenever pk(g) = 1, then Af(G) is the identity near the vertex, hence 
everywhere. 

It is not hard to write down a presentation for G (a, /?) in terms of the 
cell-division C, and //, but we omit this. However, we remark that G (a, (3) is 
a free group iff \x > 4, which is equivalent to Tr p(TaTp) < — 2. 

COROLLARY. There are pseudo-Anosov diffeomorphisms which act triv
ially on the homology of M. 

This answers negatively a conjecture of Nielsen [1]. 
PROOF OF COROLLARY. On Mg, let a and J3 be two null-homologous 

curves which fill up M. An easy way to generate such a pair is to begin with 
a standard null-homologous curve, a, and a complicated curve fio such that 
a and fio fill up M. Then a and (3 = Tp0(a) satisfy the conditions. The group 
G{ot, f3) acts trivially on the homology of M. Since Tr(/o(Ta7y *)) = 2 + //, it 
follows that Ta o T71 is isotopic to a pseudo-Anosov diffeomorphism. 

A flat Riemannian metric on a surface with cone-like singularities having 
cone angle A;7r, k an integer greater than 2, determines a complex geodesic 
in the Teichmüller metric for Teichmüller space. This geodesic consists of 
Riemannian metrics conformally equivalent to a flat metric aflmely equivalent 
to the given one. An equivalent statement to Theorem 7 is that 3r{G{a, fl)) is 
a group of translations of some complex geodesic 0, where a and /? fill up M. 
The Teichmüller metric induces a metric isometric to the hyperbolic plane on 
each complex geodesic; that is why PSL(2,R), the group of isometries of the 
hyperbolic plane, is natural in Theorem 7. 

Case (ii) of Theorem 4 is equivalent to the statement that ^{<j)) is a trans
lation of a real geodesic in Teichmüller space. Lipman Bers has found a nice 
analytic proof of the existence statements of Theorem 4, making use of this 
equivalence. 

7. The nicest aspects of this theory I have been trying to sketch are not for
mal, but intuitive. If you draw pictures of a pseudo-Anosov diffeomorphism, 
you can understand geometrically what it does, something which has puz
zled me for several years. The space &S? is actually quite concrete, and for 
a diffeomorphism </>, ^5^ (0 ) can be calculated fairly readily. This induced 
transformation is piecewise projective, locally described by integral matrices, 
so it can be computed by hand (although a computer is handier); it is pleas
ant to see something of this abstract origin made very concrete. (In contrast, 
^ ( 0 ) is given by hideously complicated transcendental expressions, in the 
usual coordinate systems.) And there is a great deal of natural geometric 
structure on «^5^, relating to structure on M, beautiful to contemplate. 

REFERENCES 

1. J. Nielsen, Surface transformation classes of algebraically finite type, Danske Vid. Selsk. 
Math.-Phys. Medd. 68 (1944). 

D E P A R T M E N T O F M A T H E M A T I C S , P R I N C E T O N U N I V E R S I T Y , P R I N C E T O N , N E W 

J E R S E Y 08544 




