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and Bibliography of Riemannian Geometry, compiled by Bérard and Berger, 
with a partial update covering the period since 1982. 

The book is not, and is not intended to be, a broad overview of the by 
now very large topics of direct and inverse problems in Riemannian geometry. 
It is, however, a clear account of the contributions along the above lines of 
the author and his collaborators, and some of its material is not in print 
elsewhere. Altogether, within the framework of its aims, the book conveys 
a clear account of this interesting work, and comprises, together with the 
recent book of Chavel [CH] on related topics, a very worthwhile addition to 
the literature of spectral geometry. 
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A function is arithmetic if it is defined on the positive integers. In this 
review arithmetic functions will be real or complex valued. The scope of this 
definition is rather wide, and functions of number theoretic interest generally 
have some structure attached to them. An example is the Dirichlet divisor 
function rf(n), which counts the number of distinct divisors of the integer n. 
Its values on the first ten integers are 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, and appear 
roughly increasing. Considered over the range 205 < n < 215 however, we 
have 4, 6, 10, 4, 16, 2, 6, 4, 4, 4. It is characteristic of functions of number 
theoretic interest that their successive values sail so erratically about. I begin 
with a snapshot history of the methods devised in Analytic Number Theory 
to come to grips with this phenomenon. As in many a family album, some 
important relations do not get into the picture. 

According to Dirichlet, it was Gauss who considered the mean-value 

(1) M(g,x) = x-1J29(n) 
n<x 
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of an arithmetic function g. Dirichlet, himself, employed this notion several 
times. He showed that 

(2) x-1 ^2 d(n) = log* + (27 - 1) + 0(aT1 / 2) 
n<x 

uniformly for x > 1, where 7 is Euler's constant. A much more spectacular 
application appears in his celebrated proof that when the integers a > 0, 
6 have no common factor other than 1, the arithmetic progression am + 6, 
m = 1,2, . . . , contains infinitely many primes. Besides this, in his proof 
Dirichlet employed series of the form 

(3) <?(*) = f>(n)n" s . 
n = l 

It is a mark of Dirichlet's consummate artistry in their application that they 
have been named after him. 

The arithmetic function g is said to be multiplicative if it satisfies the 
relation g(ab) = g(a)g(b) whenever the integers a, b are mutually prime. Since, 
apart from order, every positive integer can be represented uniquely as a 
product of primes p, 

(4) f ] g(n)n-° = ]J(1 + rfp)p- + </(p2)p-2s + • • • ) 
n = l p 

in the sense that if for some (real) s one side is absolutely convergent, then 
so is the other, and their values are equal. On the left is a Dirichlet series, 
on the right an Euler product. When g(n) is identically 1 we get a further 
simplification 

(5) fn-^na-p-r1, 
n = l p 

certainly for real s > 1. By letting s —• 1+ and noting that the series of 
reciprocals n"1 diverges, Euler could conclude that there were infinitely many 
primes. Dirichlet took this as his own starting point. For him the rôle of g 
was played by suitable extensions of the characters on an appropriate residue 
class group. The construction of these characters was another pioneering step 
along the way. 

Ultimately Dirichlet needed information about the particular series (3) un­
der consideration, as s approached 1. It was to this end that he employed 
Gauss' idea of a mean-value. 

This approach to the properties of prime numbers was transformed by a 
suggestion of Riemann: Regard the function ç(s) of the Dirichlet series at (5) 
as a function of the complex variable s, and examine its analyticity. From a 
knowledge of the zeros of £(s), and so of — log ç(s), we shall be able to deduce 
the distribution of the primes. 

For the function ç(s), now known as the Riemann zeta function, Riemann 
carried out a program of analytic continuation. In fact it is analytic over the 
whole plane save at s = 1 where, not unexpectedly, there is a pole. It satisfies 
a functional equation. There are no zeros of ç(s) in the half-plane Re(s) > 1, 
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but infinitely many in the strip 0 < Re(s) < 1. Riemann's hypothesis is that 
these zeros all lie on the line Re(s) = 1/2. 

We should distinguish between two aspects of Riemann's view of Dirich-
let series. The first is that if we know the sum function G(s) well enough, 
then we can deduce the properties of the coefficients g(n). This is exempli­
fied in the multiplicative function d(n). On the mth power of a prime p, 
d(pm) = m + 1. An easy computation of the Euler product at (4) shows that 
the Dirichlet series corresponding to the divisor function is {ç{s))2. Using an 
integral transform and our knowledge of the behavior of £(s), we can rederive 
Dirichlet's estimate for the mean-value of d(n). Indeed, this method, embel­
lished with methods for treating exponential sums, enabled the error term at 
(2) to be pushed down, so that by the early part of this century it went below 
0(x~2 /3) . In this direction, the step from primes to integers, no information 
is required concerning the zeros of Dirichlet series. 

The second aspect of the Riemann view is that if we know how to continue 
G(s) analytically, and wish to derive the properties of g on the primes, we 
need the further information of when G vanishes. After Riemann's paper in 
1859 it was nearly forty years before a method of any generality was found 
to guarantee a zero-free region. It required the existence of an Euler product, 
and when applied to ç(s) could show that there were no zeros on the line 
Re(s) = 1. From this Hadamard and de la Vallée-Poussin in 1896 derived the 
first genuine asymptotic estimate 

(6) lim - j ^ - = 1 
3-+00 X/ l o g X 

for the number ir(x) of primes up to a given magnitude x, and so realised part 
of Riemann's program. It has been a fight to improve the size of the zero-
free region of ç(s), and despite brilliant and ingenious contributions, such as 
that of Vinogradov, we still do not know if there is a strip a < Re(s) < 1 
with 1/2 < a < 1, in which ç(s) does not vanish. For the time being analytic 
number theory seems to be learning to live without the validity of the Riemann 
hypothesis. One might say that the step from integers to primes is deeper and 
more troublesome than the step from primes to integers. 

Dirichlet was the successor of Gauss, at Göttingen, and Riemann the suc­
cessor of Dirichlet. Their works, introduced in the mid-nineteenth century, 
gave a flying start to the study of arithmetic functions, introducing methods 
which remain lively to this day. Nonetheless, there are limitations to their 
approach. The multiplicative function defined by g(pm) = (—l)m+1pm""1 has 
a sum function G(s) defined by a series absolutely convergent in Re(s) > 1. 
It has zeros at (2kiri + log(p + l))/logp for integers k and primes p, and 
every point of the line Re(s) = 1 is a limit point of these. There is no further 
analytic continuation of G(s). Even for multiplicative functions we cannot 
generally expect to employ analytic continuation. Under the influence of the 
relation (5) we might retain the feeling of direction: primes to integers or, 
integers to primes, but general quantitative estimations would need a new 
aesthetic. In fact one was to come from the Theory of Probability. 

Let ƒ be a real-valued arithmetic function. For temporarily fixed x > 1, 
consider the frequency Fx(z) = vx(n\ f(n) < z) amongst the integers n in the 
interval 1 < n < x, of those for which the inequality ƒ (n) < z is satisfied. 
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Instead of considering the mean-values (1), we can investigate the limiting 
behavior, as x —• oo, of the distribution functions Fx(z). These distribution 
functions have the merit that unlike mean-values they are not particularly 
sensitive to isolated large values of ƒ, however they are less convenient to 
work with. 

A real function ƒ is deemed additive if for mutually prime integers a, b it 
satisfies the relation f(ab) = f (a) + f(b). The choice f(q) = 1 for all prime-
powers q defines w{n), which counts the number of distinct prime divisors of 
the integer n. In 1917 Hardy and Ramanujan proved that if e > 0, then in a 
well-defined sense 

\(j(n) - loglogn| < (loglogn)1/2+e 

holds for almost all integers n. Their proof went by induction on the integral 
values of u;(n), and was rather special in nature. They asked what other 
arithmetic functions essentially increased in this manner. Seventeen years 
went by and then a second proof of their result was given by Turân. As he 
showed, the interesting feature of Turân's proof method was that it would 
apply to an arbitrary additive function. In a form arrived at by Kubilius in 
1962, it could be made to yield 

(7) £ | / ( n ) - £ < r 7 ( < 7 ) | ^ z ^ - V f o ) ! 2 , x > l , 
n<x q<x q<x 

with absolute constant c\ and prime-powers q. As Turân wrote to me in 1976, 
there was not the slightest sign that anyone suspected the existence of such 
general inequalities. 

Beginning in the thirties of this century, a number of authors studied arith­
metic functions implicitly in terms of the behavior of the frequencies Fx(z). 
By 1938 Erdós, who made wide use of the method of Turân, explicitly proved 
that for a real additive arithmetic function the convergence of the three series 

fir) v- tip? <*> Ei. E *?. 
| / ( P ) | > 1 P |/(P)|<1 P I/(P)I<1 P 

was sufficient to ensure that the frequencies vx(n\ f(n) < z) converge weakly 
to a limiting distribution as x —• oo. This result may also be applied to certain 
positive-valued multiplicative functions 0, for then log g(n) is additive. 

From a present day perspective, the Turân-Kubilius inequality looks re­
markably like Tchebyshev's inequality for uncorrelated random variables, and 
the condition of Erdós' theorem like Kolmogorov's three-series criterion for 
the almost-sure convergence of a series of independent random variables. In 
fact neither Turân nor Erdós knew much of probability, as they themselves 
told me. The foundations of the theory of probability had been given accept­
able clarity with the axioms of Kolmogorov in 1933, the year before Turân's 
paper appeared. 

A method of probability, rather than the application of an aesthetic, was 
introduced into the study of arithmetic functions by Kac, who viewed the 
divisibility of integers by differing primes in terms of the independence of 
random variables. It was only approximate independence, but it enabled the 
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Central Limit Theorem to be applied. Thus in 1939 Erdös and Kac proved 
that 

1 ÇZ 

vx(n;u(n) - log log x < z>J\og\ogx) => —== ƒ e~u /2du, x —• oo. 
V27T J-oo 

The contribution of Erdös to this joint work was to overcome the approximate 
nature of the independence by the application of the (complicated) method of 
Brun's sieve. Note that in the spirit of the theory of probability, the arithmetic 
function oj(n) is renormalised in terms of the unbounded moving parameter 
x. 

The method of Erdôs and Kac ensured a similar convergence to the normal 
law for a wide class (though not all) of additive arithmetic functions. In 
particular, Kac showed that 

"«(n;d(n) < 2 l o g l o g *W l o g l o g*) =• - 1 = f e'u2/2du, x - oo. 
V27T J-oo 

From a probability point of view, Hardy and Ramanujan would have said 
"normally", the divisor function d(n) is about (logn) log2 in size, with log2 = 
.6931... A comparison with Dirichlet's estimate (2) shows that the mean 
value of d{ri) is forced up by relatively infrequent large values. 

In a joint work with Wintner, Erdös proved that the conditions (8) are also 
necessary for the weak convergence of the frequencies vx(n\ f(n) < z). To this 
end they applied the results of Erdös and Kac. In the light of the history of 
the prime number theorem, it is not surprising that this step, 'from integers 
to primes,' required more effort. 

The work of Erdös and Kac was clarified and extended by Kubilius, who in 
1954/55 constructed a finite probability space on which to model the behavior 
of additive arithmetic functions by sums of independent random variables. 
Altogether this approach is successful only if the function involved is not too 
often large on the prime-powers. This restriction reflects not only the nature 
of the model, but also the limitations of the underlying sieve method. In 
particular, the method fails if f(q) = (log g)** for a fixed a > 1. 

There is a method in the theory of probability, due to Lyapunov, which does 
not initially involve independence. The weak convergence of the frequencies 
vx{n\ f(n) < z) is equivalent to the uniform convergence, on compact £-sets, 
of the characteristic functions 

r 
j —< 

ettzdvx(n\ ƒ(n) < z), t real. 

A straightforward calculation shows that this characteristic function is 

n<x 

with a multiplicative function g(n) = exp(itf(n)) that satisfies \g(n)\ — 1 for 
all positive integers n. We are back to mean values! 

In view of this equivalence, and our earlier remarks concerning the unlike­
lihood of analytically continuing the corresponding Dirichlet series G(s), the 
situation in 1960 might not have seemed hopeful. Indeed, the Möbius function 
//(n), which is (—l)w(n) when n has no square divisor greater than 1, and is 
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zero otherwise, is readily checked to be multiplicative. Prom the existence of 
the mean-value 

A = lim x"1 ^2 M(n) 
n<x 

it is easy to deduce that A = 0 and then, as was shown by Landau in 1911, 
the basic prime number theorem (6). Any further progress in the study of 
multiplicative arithmetic functions would apparently involve a proof of the 
prime number theorem along the way. And so it turned out, although the 
events were in a different order than expected. 

In 1949, Erdös and Selberg found an elementary proof of the prime number 
theorem, one that did not apply functions of a complex variable. This was 
quite against the intuition of Hardy who, in a Copenhagen lecture of 1921, 
asserted that the existence of such a proof would cause a severe reappraisal of 
the subject. Hardy died just two years before the elementary proof was given. 

The basis of this elementary proof was Selberg's formula 

^ ( l o g p ) 2 + ^2 logplogr = 2xlogx + 0(x), 
p<x pr<x 

where p, r denote primes, and which could be obtained using elementary 
manipulation. Even today it is not obvious that this will lead to a proof of 
the prime number theorem, and the subsequent elementary proofs vary widely 
in structure. 

Although pushed far in the study of prime numbers, these elementary meth­
ods do not presently yield as much as will the classical method based upon 
the theory of the Riemann zeta function. However, the original proof of Erdös 
and Selberg certainly changed the view of the subject, since one might hope to 
apply similar methods to the study of arithmetic functions in some generality. 
To this extent, Hardy was correct. 

In 1961, Delange proved that for complex-valued multiplicative functions 
g which satisfied \g{n)\ < 1 for all n, the mean values (1) could converge to a 
limit A ^ 0, as x —• oo, if and only if the series ^2p~1(l—g{p)) converged, and 
g{2r) was not —1 for at least one positive integer r. The existence of a nonzero 
mean value meant that as s —• 1, a tauberian theorem could be applied to 
the Dirichlet series \ogG(s)ç(s)~1. Since the limit A was not allowed to be 
zero, this result did not have the prime number theorem as a corollary, but 
it gave a new proof of the Erdös-Wintner theorem, through the method of 
characteristic functions. 

This same year Wirsing began his researches in the asymptotic behavior of 
mean-values of multiplicative functions, culminating in a method, employing 
convolutions of functions and approximate integral equations, that enabled 
him to consider convergence of the frequencies (1) to zero, provided the values 
of g, \g(n)\ < 1, do not essentially fill up the whole unit disc \z\ < 1 in the 
complex z-plane. In particular, he proved that a limiting mean-value always 
existed for real multiplicative functions which satisfy \g(n)\ < 1. In this way 
he recovered the prime number theorem, with a proof different from, but 
philosophically similar to, that of Erdös and Selberg. 
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Looking more deeply into the structure of multiplicative functions g, Wirs-
ing conjectured that if |^(n)| < 1 for all n, then as x —• oo, 

(9) ^2 g{n) = AxL(\og x) + o{x) 
n<x 

for some slowly oscillating function L(w), \L(u)\ = 1, and constant A. This 
result was only available to him with the above restrictions upon the values of 
<;, and he felt that an appropriate analytic method should apply to the study 
of such problems. 

Presently such an analytic method was found by Halâsz. It employs the 
Dirichlet series G(s), but the argument is carried out in the half-plane Re(s) > 
1 of absolute convergence—we creep asymptotically close to the suspected pole 
at s = 1. The factorisation G' = (G' jG)-G is an essential hinge of the method. 
When g is multiplicative, \g(n)\ < 1, the Euler product representation of G(s) 
ensures that the Dirichlet series expansion of G'/G has manageably small 
coefficients. 

Broadly speaking, although this does not do it justice, the method of 
Halâsz allows recovery of the mean-values (1) by contour integration from 
the appropriate behavior of the Dirichlet series G(s). Thus for multiplica­
tive functions g with \g{n)\ < 1, M(g,x) —• A as x —• oo if and only if 
G(s) = A(s - l ) " 1 + o((Re(s) - l )" 1 ) as Re(s) -» 1+, uniformly on each 
half-strip | Im(s)| < M. For such multiplicative functions the possible behav­
ior^) of G(s) as s —> 1 could be classified, and Halâsz established Wirsing's 
conjecture. Once again we get a proof of the prime number theorem, but the 
elementary method of Erdôs and Selberg, having served its purpose, is now a 
long way back. 

These results of Delange, Wirsing, and Halâsz are of a general nature. 
When a multiplicative function g is not appreciably greater than 1 in abso­
lute value, and its behavior on the primes is sufficiently known, a nontrivial 
estimate for its mean-value can be deduced. However, many interesting and 
difficult problems remain. I give a few in illustration. 

If an additive function fx(p) depends upon z, what condition should it 
satisfy on the prime numbers in order that the frequencies 

(10) "xfafxin) < z) 

converge weakly as x —• oo? The characteristic function of this frequency dif­
fers negligibly from M(g, x) with the multiplicative function given by g(n) = 
exp(itfx(n)). To apply the method of Halâsz the corresponding Dirichlet 
series G(s) is considered on the line Re(s) = 1 + (logx) - 1 , so that now the 
coefficients of G(s) depend upon s. What should we expect for the asymptotic 
behavior of G(s) as s —• 1? 

If we restrict our attention to a given additive function ƒ, and in the spirit 
of the Erdös-Kac theorem consider its renormalisations, we might try to ob­
tain the conditions necessary for the weak convergence of the corresponding 
frequencies 

(11) M " i / ( " ) - * ( * ) <*£(*)) 
heuristically, by continuing to apply the notion of Erdos and Kac that an 
additive function may be regarded as a sum of independent random variables. 
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This leads to wrong answers. In particular, for unbounded /3(x) it would 
guarantee all the limit laws of the frequencies (11) to be infinitely divisible; 
and it is known that they are not. The function defined by f(q) = (logç)a, 
with any positive a ^ 1, provides a counterexample. 

At the American Mathematical Society meeting in St. Louis, in 1972, I 
made the following suggestion. Let us regard the Turân-Kubilius inequality 
as a bound for an operator norm, and employ the correspondence: If oper­
ator to sufficiency, then dual operator to necessity. It is often the case in 
projective geometry, where the duality is between point and line, that the 
dual of a proposition is its converse. This offered the possibility of a uni­
form approach to the study of the distribution of additive and multiplicative 
arithmetic functions. As illustrative examples I gave a new proof of the Erdös-
Wintner theorem, and a new result concerning the strong law of large numbers 
for additive functions. 

Applied to the study of the frequencies (11) this point of view enabled me 
to show that for convergence to the improper law with a /?(x) that does not 
increase too rapidly, a(x) must satisfy an approximate functional equation. 
The appropriate Dirichlet series G(s) then satisfies an approximate differential 
equation. As a consequence it effectively has a simple pole, not at 1 but at a 
point near to 1, whose position varies with x (and so s). 

These results enabled me to characterize those additive functions which 
have a nondecreasing normal order in the sense of Hardy and Ramanujan. 
Since Birch had shown that the only multiplicative functions with this prop­
erty were the powers of n, their original question was answered for the two 
widest classes of arithmetic functions. Afterwards, Ruzsa gave a characteri­
zation of those frequencies (10) which converge to the improper law, using a 
sieve, probability theory, and the method of Halâsz. 

For convergence of the frequencies (11) to proper laws, satisfactory neces­
sary and sufficient conditions I could obtain only under the assumption of a 
growth condition upon the renormalising parameter /3(x). Whilst growth con­
ditions of this type may be necessarily satisfied, we cannot presently prove so. 
Necessary and sufficient conditions for the weak convergence of the frequencies 
(10) to a proper law are currently not known. 

Another illustrative problem is appropriate to the book under review, and 
I give specific references. In the early seventies I was interested in obtaining 
a generalisation of the result of Delange that would allow the multiplicative 
function g under consideration to sometimes assume values greater than 1. 
My aim was a set of conditions concerning the behavior of g on the integers, 
including the existence of a mean-value, which would in their entirety be 
equivalent to a set of conditions on the prime-powers. By analogy with the 
Lebesgue classes on the reals, it was natural to introduce for each a > 0 the 
class LQ of arithmetic functions h for which 

\\h\\a=\imsup(x-1Y,\h(n)\a) 

was finite. Membership of a class La would ensure that a multiplicative 
function g was usually not too large. If the mean-value were nonzero, then 
g(n) could not be too often small, either. This would allow the methods of 
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probabilistic number theory to come into play, and so give reasonable control 
over the values of g on the primes p. However, to effect a complete result it 
would be essential to deduce from the bound on M(\g\a,x) control over the 
large values of g on the prime-powers, and the result of Delange was here of 
no help in the formulation of an appropriate condition. 

I considered first the case a = 2. In view of the above remarks concerning 
the failure of exact independence when applied to divisibility, I applied the 
dual of the Turân-Kubilius inequality for a = 2, 

I 1 I 2 

J2^\ J2 an~âYlan\ <*X^a"i2' q<x Q 
n<x,q\\n n<x 

n<x 

with an = g(n), and obtained the necessary control [8]. In a subsequent paper 
[9] I extended this result. In order that a multiplicative function g belong to 
a class LQ with a > 1, and have a nonzero limiting mean-value, it is necessary 
and sufficient that the series 

y* 9(P) ~ 1 v * MP) ~ *! 

(12) 

l /2<|s(p) |<3/2 

\g(p)\a ^ \g(pm)\a 

converge, and for each prime p, 

| | 0 ( p ) | - l | > l / 2 P p,m>2 

g{pm) 
pm # - i . 

Moreover, omitting the final one, these conditions guarantee that \g\a has a 
finite limiting mean-value. To this end I introduced high-power versions of the 
Turân-Kubilius inequality [11]. I found it convenient to employ the method 
of Halâsz as well as other methods from probabilistic number theory. 

The machinery of these papers was sufficient to characterize those multi­
plicative functions g which belonged to a class La and satisfied \\g\\p > 0 for 
some P < a. As a consequence, for multiplicative functions in La, those with 
a limiting mean-value zero could also be characterized in terms of their be­
havior on the primes [9, Theorem 2]. (Note that in the statement of condition 
(iv) of that theorem, g(p) should read |^(p)|.) A natural generalisation of the 
representation (9) was obtained. 

An independent generalisation of the case a = 2 to a > 1 for nonzero mean 
values was given by Daboussi [2]. His method, like that of Delange, employed 
the Dirichlet series G(s) as s —• 1 through real values, so avoiding contour 
integration. A form of tauberian theorem is implicit in the argument. 

In this account of the theory of arithmetic functions I have emphasized 
results of wide generality, rather than of particular depth. Even so, there are 
glaring omissions, such as sieve methods, and the work of Weyl on uniform 
distribution. In particular, I have not mentioned automorphic functions. This 
is a subject which blooms now so large that pages would not suffice, so I will 
settle for an example. 
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Ramanujan's function r(n) is defined by 
oo oo 

X]r(n)x" = x n ( l - ^ ) 2 4 . 
n = l j = l 

Ramanujan conjectured, and in 1917 Mordell proved with the aid of modular 
functions, that r is multiplicative. From that moment modular functions 
found increasing application to number theory. Ramanujan made another 
conjecture: that |r(p)| < 2 p n / 2 . This lay much deeper. 

In 1934 Rankin [26] proved that the function T(n)2n~n has a nonzero 
mean-value. The main ingredient of his proof was an analytic continuation of 
the corresponding Dirichlet series past the line Re(s) = 1, so that the more 
classical machinery of analytic number theory could be applied to it. Here 
the use of modular functions was essential, in a sense representing a far devel­
opment of a method of Riemann. As a corollary, a nontrivial estimate could 
be obtained for r{n). Ultimately, the proof of Ramanujan's second conjecture 
was achieved by Deligne, when he established the analogue of the Riemann 
hypothesis for the local zeta functions in algebraic geometry. Apparently 
Deligne was influenced by Rankin's paper. 

More recently, analytic continuation of specific Dirichlet series has been 
obtained by employing the resolvent of an appropriate relative of the Laplace 
operator. 

What can a general consideration of multiplicative functions say about 
r(n)? As a result of my work on functions of class L a , a > 1, I could prove 
that if a nonnegative multiplicative function g possessed a mean-value, then 
so did its powers g6, 0 < S < 1. Moreover, all of these new mean-values would 
be zero, unless the series ^fP~1(\/g{p) - l ) 2 , taken over the prime numbers, 
converged. Applied to Ramanujan's function this showed that the limits 

* - J u t - E (SSI)' 
n<x x ' 

existed for 0 < S < 2. Since the side condition involving y/g(p) would have 
contradicted a well-known conjecture of Sato and Tate, I conjectured that the 
limits As were zero [11]. 

That this is indeed the case was shown by Elliott, Moreno, and Shahidi 
[16], who proved that if g(n) = | r (n ) | n - n / 2 , and 0 < 6 < 2, then M(g6, x) < 
(logx)"7 for some positive constant 7. The value of this constant was im­
proved by Rankin [27], who implicitly demonstrated the validity of my related 
conjecture that no limiting mean-value As with 6 > 2 exists. These results 
employ the analytic continuation of X^^Lj r(n)4n~22~s, with its double pole 
at s = 1, as obtained by Shahidi [30], and Moreno and Shahidi [23]. The gen­
eral theory of multiplicative functions here served in a modest, motivational 
rôle. 

It was conjectured by Lehmer that r never vanishes. According to the Sato-
Tate conjecture, the angles defined by 2Cos0 = r (p)p~ n / 2 have asymptotic 
density 2(Sin 0)2/ir over the range 0 < 0 < IT. 

To give a final perspective on the estimation of arithmetic functions, I note 
that there is a positive constant /i, whose value can be calculated [12], so that 
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almost certainly 

( \r(n)\ eW^^\ 1 f' ,/2 

as x —• oo. Even assuming the above conjectures, and employing the result 
of Deligne, this appears presently beyond reach. 

I turn now to the book under review. There are four chapters: 1: Almost 
periodic sequences, 2: Generalised multiplicative functions and spaces of inte­
grate functions, 3: Arithmetic mean and generalised multiplicative functions, 
4: Applications of the results of the preceding chapters to various problems 
of number theory. 

In Chapter 3 the author shows that if for a > 1 the conditions (12) are 
satisfied by a multiplicative function g, then both g and \g\a have nonzero 
limiting mean-values. This is carried out not for functions defined on the 
integers, but rather for functions on semigroups. These semigroups are to 
be freely generated by countably many generators, and to possess a norm N 
given by a semigroup homomorphism into the reals > 1. In addition they 
must satisfy two distributional properties. 

H(L): lim x"1 Y^ 1 exists and is nonzero, 
a:—•oo • ' 

Nn<x 

H(C): ] T logiVp<x. 
Np<x 

Here I have employed p to denote a typical generator, and n to denote a typical 
element of the semigroup. The integral ideals in the ring of algebraic integers 
of a finite extension of the rationals form such a semigroup. The method 
might be viewed as elementary, save that it appeals to results established in 
Chapter 2. 

Chapter 2 is implicitly concerned with showing that for a multiplicative 
function in La to have a nonzero limiting mean-value, a condition equivalent 
to (12) is also necessary. 

For a fixed prime p one may define a probability measure on the set Sp = 
{p"n, n > 0} by /*p({p~n}) = p"n(l - p_ 1) . The direct product of the 
Sp, together with the product measure // induced on it by these marginal 
measures, then gives a format within which the divisibility of an integer by 
a particular prime may be viewed as a measurable event. The behavior of 
an additive function f(n) over the interval 1 < n < x may be simulated by 
a sum of random variables, independent with respect to /x, provided that ƒ 
can be replaced by a suitably truncated form fr which vanishes on the prime 
powers q > r. Without application of a sieve method, this truncation must 
be severe, say down to r < log x. The limiting behavior of the frequencies 
vx{p>\ f(n) < z) is then replaced by that of the vx(n\ fr(n) < z). 

This is the method which implicitly underlined ErdôV work on arithmetic 
functions in the early part of this century, save that it was in a different 
format. For him the measure // was replaced by asymptotic density, and 
the independence with respect to /i by application of the Chinese Remainder 
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Theorem in arithmetic. The truncation was down to a value of r independent 
of a;. 

This approach, attractive in its immediacy, has been rediscovered many 
times. Experience shows that it is useful only if the frequencies Fx(z) under 
consideration have the property that if they are compact, then suitably trans­
lated they are also convergent. In particular, in this form it cannot be applied 
to the study of arithmetic functions with unbounded renormalisations, such 
as (cj(n) - log log x)j\J\og log x. 

An interesting variant was suggested by Schwarz and Spilker [29]. Give 
Sp the discrete topology, and then a one-point compactification. Assign the 
extra point measure zero. The product S of the compactified Sp then yields 
a compact space, with measure /i, in terms of which we can formulate Riesz 
representations. 

In Chapter 2 the author follows the philosophy of Erdös within the 
construction of Schwarz and Spilker. The proof employs Dirichlet series 
J2g{n)n"s partly after the manner of Delange [5], and Daboussi [2]. Un­
fortunately the setting is even more general than that of Chapter 3. Each Sp 

is replaced by an arbitrary denumerable set of elements {tp , n > 0}, and the 
primes p are then replaced by the positive integers as an index. The resulting 
(compactified) product T is given what is essentially a norm TV, most easily 
viewed in terms of the semigroup norm considered in Chapter 3. A product 
measure on T is induced by the marginal measures /zm with 

M{4n)» = (i - *tài'r1 Wm)-m. 
The Dirichlet series is replaced by a formal (Euler) product. 

The novelty of the author's approach is to show that the existence of a 
nonzero limiting mean-value for a multiplicative function is, under suitable 
conditions, equivalent to the existence of a related function in L1 (T, /i) whose 
integral over the whole space does not vanish. An attractive idea which is 
buried in the generality of the setting. It is also disappointing that amongst 
the many pages of details it is still necessary to appeal to Kolmogorov's three-
series theorem from the theory of probability proper. 

In spite of what the author says (cf. p. 70), I do not feel that this chapter 
clarifies uwhat a multiplicative function is", or what problem was "actually 
treated" in related considerations by other authors. 

Chapter 1 contains background material and preparatory results for the 
following three chapters. It begins with the Bohr compactification of the 
group of integers, and goes on to discuss various spaces on which to study 
generalisations to arithmetic of Bohr's notion of an almost periodic function. 
The following examples are much studied. 

For a > 1, an arithmetic function ƒ is said to be almost periodic Ba (B 
conveniently denotes both Bohr and Besicovitch) if for each e > 0 there is a 
trigonometric function 

k 

P£(n) = ] T c3e
2*ia'n, a3 real, 

file:///J/og
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so that || ƒ — Pe\\a < e. Clearly such functions form a subspace of La. It is 
straightforward to show that for real a the Fourier-Bohr coefficients 

f {a) = lim x" 1 Y* f{n)e-2nian 

n<x 

exist. Those a for which f (a) ^ 0 define the spectrum of ƒ. In particular, the 
limiting mean-value ƒ (0) exists. Apart from its intrinsic interest, the study of 
mean-values may be brought to bear upon that of almost periodic arithmetic 
functions. 

A function is limit-periodic Ba if it is almost periodic Ba with a spectrum 
containing only rational points. 

In Chapter 1, as in the rest of the book, the author studies the relevant 
Dirichlet series only in the neighborhood of a point on the real line, essentially 
on the real line. There is no discussion of analytic continuation, nor of Fourier 
inversion in the complex plane. 

Chapter 4 specialises to functions defined on the integers. Employing re­
sults from the previous chapters, the author characterises multiplicative func­
tions which are limit-periodic B with nonempty spectrum (this last condition 
is omitted from the formulation) in terms of their behavior on the primes, 
and the behavior of associated Dirichlet series. He goes on to show that a 
multiplicative function in B is limit-periodic B. 

A characterisation of the multiplicative functions in Ba (a > 1) with a 
nonempty spectrum was first given by Daboussi [1], using the L2 Turân-
Kubilius dual. As a result he showed that multiplicative functions belonging 
to Ba are automatically limit-periodic Ba. In fact more is true (see Daboussi 
and Delange [3]). 

As a next application in Chapter 4, the Erdós-Wintner theorem for addi­
tive functions ƒ is derived, by introducing the multiplicative function g(n) = 
exp(itf(n)), as did Delange. Further results concerning associated limit-
periodic sequences are established, following in part the early procedure of 
Erdôs. The author's comments on page 139 concerning the inevitability of 
computing the mean value of g seem contradicted by this early work of Erdos. 

The last result in the book concerns Ramanujan's function T(TI). Let h{n) = 
T(n)n~n/2. It is proved that the map on the space C(S,R) defined by 

n = l 

has a Riesz representation ƒ ƒ dv over S, where the measure v is singular with 
respect to the canonical measure /A introduced earlier in this review. 

Underlying the method of this monograph is a limitation that is care­
fully skirted. The method will not deal with arithmetic functions, such as 
| r (n) |n~ n / 2 , which have asymptotic mean-value zero. 

At whom is this book aimed? As an introduction to the theory of multi­
plicative and other arithmetic functions it would not serve. The rather large 
technical background assumed of the reader is out of proportion with the 
number and nature of the results proved. At rock bottom many of the proofs 
rely on manipulation of a number-theoretic nature, which might have been 
presented with less sophistication. Thus on p. 115 of Chapter 3, it is asserted 
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that the simplest method of reducing the cases a > 1 of a theorem to the case 
a = 1 is a detour through the measure-theoretic results of Chapter 2. It seems 
simpler and more direct, to me, to note that the inequality \z\ — z «C \z — 1|2 

is valid in the complex disc \z — 1| < 1/4, and then to check the appropriate 
inequalities directly. 

There is no general index, and no list of symbols. The set N*, of posi­
tive integers, is defined in the body of the text at the foot of page 4. This 
symbol occurs many times. However, in Chapter 2, §2 during the defini­
tion of the foundational products on which the measure theory is to be con­
structed comes, like a bolt from the blue, a set N as well. Moreover, we are 
told, and it is underlined in the text, that it is the choice of (norm) given 
by N(tu ) = N(*i)n which simplifies the exposition. Examination of the 
subsequent text shows that N must be the set of nonnegative integers. Ac­
tually, it has occurred very much earlier, undefined, a couple of times, the 
first being Theorem 2.c on page 11 of Chapter 1. There, in one paragraph 
we find the nightmare notation: {gk}, A; 6 N, followed in the next sentence 
by {FX(N),N € N*}. The text appears to have been reduced directly from 
a typescript, and the sad fact is that the difference between N and N pretty 
well disappears. 

On p. 70 of Chapter 2 we learn that the norms N(tu ) are assumed non-
decreasing as u runs through N*. It is unfortunate that in the review of the 
earlier models which begins Chapter 3, this condition is omitted. From the 
detailed argument of p. 112, it is clear that some uniform bounding of N{z£ ) 
from below is assumed, so presumably this (essential) monotonicity is actually 
still in force. Look out if you start with Chapter 3! 

The content is rather uneven in level of sophistication. On page 38 there 
is a laborious summation by parts given in full detail. This could have been 
avoided by an application of the inequality pr >• r log r which follows imme­
diately from the Tchebyshev inequality given three lines earlier. Whereas, 
on page 147 it is asserted of h(n) = T(n)n~n/2, where r(n) is Ramanujan's 
function, that: h(p)2 < 4 is a result of Deligne, and h(pa)2 < ( a + l ) 2 is a 
simple consequence; no mention of a reference, nor of the theory of modular 
functions!! There are other 'references by name only'. 

In spite of his efforts—and the peculiar comments which he gives as a gloss 
for some of the results do not help—one gains a rather fragmentary feel for the 
subject, with not much motivation for the proofs. For the beginner it could 
not help to be told (p. 115): "One considers the expression: .. ." followed 
by an immediate dive into a large number of consecutive pages of crabbed 
symbology. 

For the expert it is a different matter. It is interesting and useful to have 
standard theorems put into a different setting, and much fun can be had 
spotting familiar ideas in an unfamiliar guise. It is unfortunate that in his 
aim at the widest generality, the author has obscured the potential elegance 
of his approach. 

I would have liked direct references to related works, rather than the se­
lective and sometimes oblique references to only studies involving arithmetic 
functions with nonzero means. Examples would be Wirsing [32] and Halâsz 
[18], whose papers in the theory of arithmetic functions I regard as essential 
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reading. These are nowhere mentioned. It would also have been appropriate 
to indicate Beurling as a founder of the abstract modelling of the multiplica­
tive properties of the rational integers. 

A comment is in order here, concerning the author's attitude towards the 
prime number theorem and the Turân-Kubilius inequality, whose rôle in the 
probabilistic theory of numbers he dismisses almost pejoratively in the intro­
duction. A particular bête noire seems to be the Turân-Kubilius inequality. 
This he regards as apparently alien to the number theory considered, despite 
its rôle in the discovery of the results, and he emphasizes that it never ap­
pears in his present work (pp. 130, 145, respectively). The coup de grâce is 
apparently given on p. 145, where he indicates that his methodology allows 
extension of the results of §2 of his last chapter to more general semigroups, 
and for this reason the use of the Turân-Kubilius inequality (other results are 
hinted at) has been studiously avoided. The implication is that the Turân-
Kubilius inequality is not then applicable. This is false. 

Appropriate versions of the Turân-Kubilius inequality, valid for every a > 
1, may be readily derived in all the situations which he considers, both the 
semigroups, and the products of discrete spaces. Moreover, it does not need 
the full hypothesis H(L) of his treatment, merely the weaker bound 0(x) for 
the number of elements n with Nn < x. Of course, one cannot derive such 
analogues using the classical method of Turân (and Kubilius), but it is possible 
to apply another method, depending upon a simple application of Cauchy's 
theorem in the theory of complex variables, which is exposed in my papers 
[11, 15] and book [13]. This is not surprising. Since the study of a group and 
its dual is tantamount to a consideration of the same object from two sides, 
the existence of any direct sum or product structure practically guarantees 
the existence of an inequality of Turân-Kubilius type. 

The author's treatment of a particular selection of topics in terms of in­
tegration on a suitable space is interesting and valuable. To gain much from 
it, however, it would be better to bring to it an already well-defined grip on 
some basic theorems. 

In sum, this is not a book with which to begin the study of arithmetic 
functions. Experts might well find it stimulating. It made me jump up and 
down a few times. 

Notes. Dirichlet's remarks concerning mean-values may be found in his 
collected works [6]. An interesting account of his life is given in [24]. 

Classical accounts of Analytic Number Theory may be found in the books 
of Landau, e.g. [22]. There is a recent new edition of the well-known volume 
by Titchmarsh [31], edited by Heath-Brown. See also Prachar [25], Edwards 
[7], Ellison and Mendès-France [17], Davenport [4], and Ivié [18]. 

For a detailed account of probabilistic number theory up to 1964, includ­
ing the work of Erdôs, Wintner, Kac, and himself, see Kubilius [21]. For 
later developments, including Mean-Value theorems, see Elliott [10], and the 
supplement to [13]. There are a number of variant proofs of the mean-value 
theorem for multiplicative functions of class L2, due to Delange and Daboussi, 
Schwarz and Spilker, and others. A survey of these, along with related refer­
ences, may be found in Schwarz [28]. 
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An introductory discussion of the estimates involving Ramanujan's r-func­
tion, including the work of Rankin, may be found in Hardy [19]. 
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Le problème des modules pour les branches planes, by Oscar Zariski, with 
an appendix by Bernard Teissier. Hermann, Paris, 1986, 209 pp., $28.00. 
ISBN 2-7065-6036-4 

In the fall of 1973 Oscar Zariski gave a series of lectures about curve sin­
gularities at the École Polytechnique in Paris. A set of notes based on these 
lectures was prepared by François Kmety and Michel Merle, and an appendix 
was added by Bernard Teissier. These notes have now been published as a 
book by Hermann. 

Nothing of comparable originality has been published about the subject 
since the work of Enriques and Chisini [5]. The book describes a deep and 
beautiful analogy between the moduli space Mg for smooth curves of genus </, 
and a certain local moduli space Air for plane curve singularities. A partial 
description of Mr is given, and many important open problems are described. 

Riemann noticed that smooth curves of genus g depend on 3g - 3 param­
eters if g > 1. How many parameters are needed to describe plane curve 
singularities of the same topological type? It is remarkable that we are still 
unable to solve this problem in general, and in this book the reader will find 
the first real progress toward a solution. 

Chapter I, "Préliminaires", Chapter II, "Invariants d'équisingularité", and 
Chapter III, "Représentations paramétriques", give a clear review of the clas­
sical theory of plane curve singularities. Chapter IV, "L'espace des modules", 
and Chapter V, "Étude des exemples... " give detailed calculations. Chapter 
VI, "Le point de vue de la théorie des déformations", and Teissier's appendix, 
describe the modern theory in which deformation theory plays a central role. 

The vanishing of a polynomial f(X,Y) E C[X, Y] defines an affine plane 
curve. A singularity of this curve, for example at the origin, is described as 
follows. As an element of the power series ring C[[X, Y]], f(X,Y) will factor 
into a finite number of irreducible power series, with multiplicities. An irre­
ducible factor g(X, Y) defines a branch C of the singularity, with coordinate 
ring 0 = C[ [X,F] ] / (ÔO = C[[tn,y{t)]]. In other words the problem of study­
ing the singularity can be reduced to the problem of studying complete local 


