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TIGHTLY CLOSED IDEALS 

MELVIN HOCHSTER AND CRAIG HUNEKE 

All rings are Noetherian, commutative, with 1, and contain a field. We 
define the tight closure of an ideal in characteristic p and for algebras essen
tially of finite type over a field, and use it to give new, much simpler proofs of 
many theorems in a greatly strengthened form, including the result that rings 
of invariants of linearly reductive groups acting on regular rings are Cohen-
Macaulay (C-M), the Briançon-Skoda theorem, and the monomial conjecture. 
Although we do not define tight closure in arbitrary rings, many of our results 
can be proved in that generality by using Artin approximation to reduce to 
the affine case. Results discussed here are treated in full in [HH]. 

1. Tight closure. Let R° = R — IJ{^ : P ^s a minimal prime of R}. 
Let / C R be an ideal. If chari? = p > 0 we say that x G R is in the tight 
closure, /*, of 7, if there exists c € R° such that for all e >• 0, cxv* G I^pe\ 
where /fa' = (iq : i G I) when q = pe. If R is of finite type over a field 
K of characteristic 0, we say that x G J* if there exist c G i?°, a finitely 
generated Z-subalgebra D Ç K, a finitely generated jD-flat jD-subalgebra RD 
of i2, and an ideal ID Q RD such that R = K <g)£> RD, I = IDR, and for all 
maximal ideals m of D, if K = R/m (with the subscript K denoting images 
after applying /c®£>), and p = char/c, then cKx% G IK (in RK — RD/WRD) 
for all q of the form pe , e » 0. If i? is essentially of finite type over a field K 
of char 0 we define ƒ* as (JB(I HB)* as B runs through all subrings of R of 
finite type over K such that R is a localization of B. 

These intricate definitions yield an immensely powerful tool. We note that 
ICI* = ƒ** and that I* Ç ƒ, the integral closure of / , but that I* is usually 
much smaller than I. If / = ƒ *, we call I tightly closed. A key point is that if 
R is regular, then 1 = 1* for all / . Suppose that R is regular of char p > 0. To 
see that / = I* we may assume that (R,m) is local and that y G I* —I where 
ƒ = (x i , . . . , xm)R. Then for some c G R°, cyq G /M for all q = pe > 0. Since 
the Probenius ƒ is flat, / ^ : yq = (I : y ) ^ , which implies that c £mq, and 
since this is true for every # » 0, c = 0, a contradiction. We call rings such 
that in all localizations 1 = 1* for all / F-regular. 

(1.1) REMARK. If R Ç S are domains where * is defined, S is regular, and 
/ is an ideal of R then I* S = IS, since IS is tightly closed in S. Hence, I* 
is contained in all ideals containing / which are contracted from regular over-
rings. We do not know whether I* is the intersection of all ideals containing 
ƒ which are contracted from regular overrings. 
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(1.2) REMARK. A Gorenstein local ring has the property that 1 = 1* for 
all 7 iff the ideal generated by a single s.o.p. (system of parameters) is tightly 
closed. 

2. Subrings of regular rings. It is not hard to prove that F-regular 
rings are normal. Of much greater significance is: 

(2.1) THEOREM. An F-regular ring which is module-finite over a regular 
ring is Cohen-Macaulay. 

This is immediate from the following crucial fact: 

(2.2) THEOREM. Let R be a module-finite and A-torsion-free overring of 
A, where A is a regular domain of charp > 0 or else essentially of finite 
type over a field, and let x i , . . . , x n be elements of A which are part of a 
s.o.p. in Rp for all P which contain them. Let I = (xi,...,xn-i)R. Then 
I :R xnRCI*. 

SKETCH OF PROOF IN charp. One reduces to the case where the X{ are an 
^-sequence. One can choose a free >l-module F Ç R such that R/F is killed 
by c E A — {0}. If yxn € J2?=i Rxii raising to the qth power where q = pe 

and multiplying by c yields x£(q/«) € YTi=l ^F => <#* G {x\,..., xq
n_x)F ç 

/W ^yeP. (Cf. [HI, Lemma 4.4].) 
It is trivial to prove that if R Ç S are domains, J = J* in S and I = JnR, 

then 1 = 1* in R. In consequence: 

(2.3) THEOREM. If R Ç S and R is a direct summand of S as an R-
module, then if S is F-regular, R is F-regular and so C-M. 

Let xi,...,Xd be a s.o.p. for the local ring R. Let Ir = (:ri,.. . , xr)R. If 
tight closure is defined in R then, under mild restrictions, in order that R 
be C-M it suffices that Id (or Id-i) be tightly closed. When R is a subring 
of a regular ring S one can then deduce the C-M property for R from the 
contractedness of Id (or Id-i) from S. The condition that one ideal generated 
by a s.o.p. be contracted is enormously weaker than the condition that R be 
a direct summand: it holds frequently in charp when the direct summand 
condition does not. 

Even when * is not defined, Artin approximation yields: 

(2.4) THEOREM. Let R be an equicharacteristic ring which is a direct 
summand as an R-module (or a pure subring: cf. [HR1]) of a regular ring S. 
Then R is C-M. 

A result similar to (2.4) was first proved in [HR1] for rings of invariants 
of linearly reductive groups acting on regular rings. The result was extended 
to summands of regular rings for algebras of finite type in [K], while in [B] it 
was shown that in the affine and analytic cases direct summands of rational 
singularities are rational. None of these earlier arguments permitted extension 
to the general equicharacteristic case. 

One of the most important applications of tight closure is to calculating the 
effect of ideal operations like intersection, colon, etc. on ideals generated by 



TIGHTLY CLOSED IDEALS 47 

monomials in a system of parameters (and quite a bit more generally). There 
is an expected or "formal" answer which is what one would get if the elements 
formed an i^-sequence. The key point is that under mild hypotheses the 
answer obtained is contained in the tight closure of the expected answer, and 
hence, by Remark (1.1), coincides with it if one expands to a regular overring. 
This last statement does not refer to tight closure and can be proved in great 
generality in char 0. In fact one can establish much more general statements, 
of which the following very powerful result on vanishing of maps of Tor is an 
example. 

(2.5) VANISHING THEOREM. Let A-+ R^-> S be maps of equicharacter-
istic rings such that A, S are regular domains, R is a module-finite overring 
of A, and f is infective. Assume that R is excellent. Let M be any A-module 
of finite type. Then for all i > 1, the map Torf(M, R) —• Tor^(M, S) is zero. 

Note that there is no finiteness condition on the map ƒ. The case where 
M = J4 / (ZI , . . . , Xi), where the xt are a s.o.p. in A, and R is a direct summand 
of 5, implies that summands of regular rings are C-M. The case where M = 
A/J and 5 is a DVR dominating the local ring R implies the canonical element 
conjecture [H2]. The proof of (2.5) uses the notion of the tight closure of a 
submodule of a module: one shows that certain cycles are in the tight closure 
of the boundaries and hence are boundaries once one passes to the regular 
ring 5, where every submodule is tightly closed. (In charp, if TV Ç M we say 
y € M is in TV* if there exists c G R° such that for all e ^> 0, c(l <8> y) maps to 
0 in FC(M/TV), where F is the Peskine-Szpiro functor [PS, p. 330, Definition 
(1.2)].) 

It would evidently be of great importance if the theory of tight closure 
could be extended to mixed characteristic. 

3. The Briançon-Skoda theorem and rational singularities. There 
is a strong connection between rational singularities and F-regularity. We 
observe: 

(3.1) THEOREM. Suppose that R is of finite type over a field K of char 0 
and that ƒ = 7* for all I Ç R. If either: (a) R has isolated singularities or (b) 
R is ^-graded with RQ = K, m = 0 ° ^ Ri, and R has rational singularities 
except possibly at m, then R has rational singularities. 

In particular, F-regular surfaces have rational singularities. The converse is 
not true: an example of [W] shows that a surface in char 0 may have rational 
singularities without even being of F-pure type in the sense of [HR2]. The 
proof of part (a) depends on the following result, which generalizes a theorem 
of Briançon-Skoda first proved analytically [BS] and later algebraically (see 
[LT, LS]). 

(3.2) THEOREM. Let R be a ring of charp > 0 or an algebra essentially 
of finite type over a field and let I be an ideal of height at least one generated 
by n elements. Then In Ç I*. In particular, if R is F-regular then In Ç / . 

PROOF IN charp. Let 7 = S r= i xiR anc* a = In- If a is contained 
in the union of 7* and the minimal primes of R it must be Ç ƒ*. If not 
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choose y in a not in any minimal prime of R. One can show that yk+m e 
arn'¥1{a-\-yR)k~1 Ç am for a certain integer k > 1 and all m 6 N. Let c = yk, 
m = q = pe and note that aq = Inq Ç /tel (since / has n generators), i.e. 
cj/<? e /tol for all q. 
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