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Carter’s book contains a very good introduction to the present state of
affairs and can be warmly recommended to anyone who is interested in
penetrating into the highly interesting domain of finite groups of Lie type. The
book has an extensive bibliography.
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The arithmetic of elliptic curves, by Joseph H. Silverman, Graduate Texts in
Mathematics, vol. 106, Springer-Verlag, New York, Berlin, Heidelberg and
Tokyo, 1986, xii + 400 pp., $48.00. ISBN 0-387-96203-4

The arithmetic (= diophantine theory) of curves of genus 0 is now very well
understood. That of curves of genus > 1 is still in a rudimentary and
unsatisfactory state. For curves of genus 1 there is a large body of established
theory and an even larger body of interrelated conjecture: the whole being
currently in a state of exciting development.

We work over a ground field &, which may be the rationals Q, or e.g., a
global or local field. An elliptic curve defined over k consists of a curve of
genus 1 together with a point 0 (say) on it, both defined over k (we shall often
say “rational” instead of “defined over k”). Here we encounter our first
puzzle. There is no known algorithm for deciding (e.g., when k = Q) whether
there is a rational point on a given curve of genus 1 or not: in particular there
is no Hasse principle (local-global principle). However, to every curve of genus
1 there is associated in a canonical way an elliptic curve over the same ground
field (its jacobian, a generalization of the notion from algebraic geometry). The
theory of curves of genus 1 thus largely reduces to that of elliptic curves.

The points of an elliptic curve have a natural structure as an abelian group,
the given point 0 being the neutral element (“zero”) of the group. In fact the
elliptic curves over a field k are precisely the abelian varieties of dimension 1
over k. In particular the set of rational points has a natural abelian group
structure. When k = Q a famous theorem of Mordell states that this group is
finitely generated. This result was generalized by Weil and others and the
group is usually called the Mordell-Weil group (for the given elliptic curve and
ground field). There is, however, as yet no algorithm for determining the
Mordell-Weil group, though this can usually be done in specified cases. The
absence of an algorithm here is closely associated with the failure of the Hasse
principle mentioned above. The “obstruction” to the Hasse principle is en-
capsulated in a group discovered independently by Tate and Shafarevich and
called the Tate-Shafarevich group. It has many interesting properties, both
proved and conjectural. Without doubt the reviewer’s most lasting contribution
to the theory is the introduction of the cyrillic letter IIl (“sha”) to denote this
group, a usage which has become universal.
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When k = Q early workers appear to have believed that the rank (number
of generators of infinite order) of the Mordell-Weil group is bounded; now the
opposite is conjectured, but the truth is not known. The possible structures of
the torsion part of the Mordell-Weil group have, however, been determined by
Mazur using tools from the theory of modular forms.

Associated with an elliptic curve over a global field such as Q there is
associated an L-function, many of whose properties remain conjectural. Guided
first by a heuristic intuition and then by massive numerical computations,
Birch and Swinnerton-Dyer were led to some very precise conjectures relating
the behavior of the L-function to such things as the Mordell-Weil and
Tate-Shafarevich groups. These conjectures have stood the test of much
subsequent investigation, but it is only recently that some fragments of them
have been proved.

The above partial account indicates the central position of the theory of
elliptic curves and the wide variety of disciplines on which it draws. The author
justifiably remarks “Considering the vast amount of research currently being
done in this area, the paucity of introductory texts is somewhat surprising.” In
the reviewer’s opinion his book fills the gap admirably. An old hand is hardly
the best judge of a book of this nature, but the reports of graduate students are
equally favorable.
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Geometry of CR-submanifolds, by Aurel Bejancu. Mathematics and Its Applica-
tions, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, and
Tokyo, xii + 169 pp., $49.50. ISBN 90-277-2194-7.

The study of complex submanifolds of a Kaehlerian manifold, in particular,
of a complex projective space, is one of the most important fields in differen-
tial geometry. It began as a separate area of study in the last century with the
investigation of algebraic curves and algebraic surfaces in classical algebraic
geometry. Included among the principal investigators are Riemann, Picard,
Enriques, Castelnuovo, Severi, and C. Segre. It was J. A. Schouten, D. van
Dantzig and E. Kahler [5, 8, 9] who first tried to study complex manifolds
from the viewpoint of Riemannian geometry in the early 1930s. In their
studies, a Hermitian space with the so-called symmetric unitary connection was
introduced. A Hermitian space with such a connection is now known as a
Kaehlerian manifold.

It was A. Weil [10] who in 1947 pointed out that there exists in a complex
manifold a tensor field J of type (1,1) whose square is equal to minus the
identity transformation of the tangent bundle, that is, J? = —I. In the same
year, C. Ehresmann introduced the notion of an almost complex manifold as



