GENERALIZED EXPONENTS VIA HALL-LITTLEWOOD SYMMETRIC FUNCTIONS

R. K. GUPTA

The generalized exponents of finite-dimensional irreducible representations of a compact Lie group are important invariants first constructed and studied by Kostant in the early 1960s. Their actual computation has remained quite enigmatic. What was known ([K] and [Hs, Theorem 1]) suggested to us that their computation lies at the heart of a rich combinatorially flavored theory.

This note announces several results all tied together by Theorem 2.3 below, which selects the natural generalizations of the Hall-Littlewood symmetric functions, rather than the irreducible characters, as the best basis of the character ring. Full details will appear elsewhere.

1. Statement of problem. Let $\mathfrak g$ be a complex semisimple Lie algebra with adjoint group G. Via the adjoint action, the symmetric algebra $S(\mathfrak g)$ becomes a graded representation of G. Kostant studied this representation in his fundamental paper [K]; his results are well known. $S(\mathfrak g) = I \otimes H$ is a free module over the G-invariants I generated by the harmonics H. Moreover, I is a polynomial ring on homogeneous generators of known degrees, and $H = \bigoplus_{n>0} H^p$ is a graded, locally finite $\mathfrak g$ -representation.

Hence, to study the isotypic decomposition of $S(\mathfrak{g})$, one forms for each irreducible G-representation V the polynomial in an indeterminate q:

(1.1)
$$F(V) := \sum_{p \ge 0} \langle V, H^p \rangle q^p.$$

Here \langle , \rangle is the usual form dim $\operatorname{Hom}_{\mathfrak{g}}(,)$ on the representation ring of \mathfrak{g} . Kostant's problem asks us to determine F(V); he called the integers e_1, \ldots, e_s with $F(V) = \sum_{i=1}^s q^{e_i}$ the generalized exponents of V.

The polynomial F(V) turns out to be a rather deep invariant of the representation V. For instance, the F(V) are certain Kazhdan-Lusztig polynomials for the affine Weyl group (combine [Hs, Theorem 1] and [Ka, Theorem 1.8]), and they describe a certain group cohomology [FP, Theorem 6.1]).

2. A bilinear form. Our idea is to interpret F as a bilinear form on the character ring Λ of \mathfrak{g} . Precisely, *define* a $\mathbf{Z}[q]$ -valued symmetric bilinear form $\langle \langle , \rangle \rangle$ on $\Lambda[q]$ by setting

(2.1)
$$\langle\langle \operatorname{ch}(V_1), \operatorname{ch}(V_2)\rangle\rangle := F(V_1 \otimes V_2^*),$$

Research supported by a NATO Postdoctoral Fellowship.

Received by the editors July 28, 1986 and, in revised form, December 10, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 22E46, 17B10, 05A15; Secondary 05A17.

for any two g-representations V_1 and V_2 , and extending q-bilinearly. (Here ch(V) and V^* mean the character and dual of V.) Our (2.1) makes sense as (1.1) actually defines F on any representation of \mathfrak{g} .

We will present a basis in which our new form $\langle\langle\;,\;\rangle\rangle$ diagonalizes. First fix a Cartan subalgebra $\mathfrak h$ of $\mathfrak g$ and some familiar associated objects. Let Φ be the root system with Φ^+ a choice of positive roots. Form the lattice $\mathcal P$ of integral weights and its subset $\mathcal P^{++}$ of dominant ones. Let W be the Weyl group with length function l. Set

$$t_{\pi}(q) := \sum_{\substack{w \in W \ w \cdot \pi = \pi}} q^{l(w)}, \quad ext{for } \pi \in \mathcal{P}.$$

Use exponential notation for characters.

Define, for $\lambda \in \mathcal{P}^{++}$, the Hall-Littlewood characters

(2.2)
$$P_{\lambda} := t_{\lambda}(q)^{-1} \sum_{w \in W} w \left(e^{\lambda} \prod_{\varphi > 0} \frac{1 - q e^{-\varphi}}{1 - e^{-\varphi}} \right).$$

These characters are the classical Hall-Littlewood symmetric functions (see $[\mathbf{M}, \text{III}]$) when $\mathfrak{g} = \mathfrak{sl}_n$; they appear in this more general context in work of Kato $[\mathbf{Ka}]$.

THEOREM 2.3. The P_{λ} , $\lambda \in \mathcal{P}^{++}$, form an orthogonal $\mathbf{Z}[q]$ -basis of $\Lambda[q]$ with respect to the form $\langle \langle , \rangle \rangle$, and

$$\langle\langle P_{\lambda}, P_{\lambda}\rangle\rangle = t_0(q)/t_{\lambda}(q).$$

We prove this by comparing $\langle\langle \,,\, \,\rangle\rangle$ to $\langle \,,\, \,\rangle$ via the expansion $\sum_{p\geq 0} \operatorname{ch}(H^p)q^p = t_0(q)\prod_{\varphi}(1-qe^{\varphi})^{-1}$, as we know [G1, Theorem 2.5] the basis of $\Lambda[[q]]$ dual to $\{P_{\lambda}\}_{\lambda\in\mathcal{P}^{++}}$ with respect to $\langle \,,\, \,\rangle$.

Kato [Ka] expressed the irreducible characters $\chi_{\pi}=\operatorname{ch}(V_{\pi}),\ V_{\pi}$ the g-representation of highest weight $\pi\in\mathcal{P}^{++}$, in terms of the $P_{\lambda}:\chi_{\pi}=\sum_{\lambda\in\mathcal{P}^{++}}m_{\pi}^{\lambda}(q)P_{\lambda}$. The polynomials $m_{\pi}^{\lambda}(q)$ are Lusztig's q-analogs of λ -weight multiplicity in V_{π} [L]; they satisfy $m_{\pi}^{\lambda}(1)=\dim(V_{\pi}^{\lambda})$. We get

COROLLARY 2.4. For $\alpha, \beta \in \mathcal{P}^{++}$,

$$F(V_{\alpha} \otimes V_{\beta}^{*}) = \langle \langle \chi_{\alpha}, \chi_{\beta} \rangle \rangle = \sum_{\theta \in \mathcal{P}^{++}} m_{\alpha}^{\theta}(q) m_{\beta}^{\theta}(q) t_{0}(q) / t_{\theta}(q).$$

As Kostant [K] proved $F(V)|_{q=1}=\dim(V^0)$ for all V, our formula is a "q-analog" of the fact

$$F(V_{\alpha} \otimes V_{\beta}^*)|_{q=1} = \sum_{\theta \in P++} \dim(V_{\alpha}^{\theta}) \dim(V_{\beta}^{\theta}) \#(W \cdot \theta).$$

3. Combinatorics of mixed-tensor SL_n -representations. We set $\mathfrak{g} = \mathfrak{sl}_n$ to illustrate the effective use of §2 in evaluating F on irreducibles.

We have formulated a stability theory (1981) for the generalized exponents based on a "mixed-tensor" parameterization $V_{\alpha,\beta}^{[n]}$ of the irreducible PGL_n-representations, using certain pairs α,β of partitions. First we discuss combinatorics of SL_n-representations.

The Weyl group of SL_n is the symmetric group S_n ; Λ is the ring of symmetric functions in $x_i = \exp(t_i)$, $1 \leq i \leq n$, for t_i the coordinates on diagonal matrices in \mathfrak{sl}_n . \mathcal{P}^{++} identifies with the set of partitions of less than n rows via $\sum_{i=1}^{n-1} c_i t_i \leftrightarrow (c_1,\ldots,c_{n-1})$. (Note $t_1+\cdots+t_n=0$.) Then, $\chi_{\lambda}=s_{\lambda}(x_1,\ldots,x_n)$, the classical *Schur function*, and $P_{\lambda}=P_{\lambda}(x_1,\ldots,x_n;q)$. See $[\mathbf{M},\mathbf{I}(3),\mathbf{III}(2.6)]$ for the combinatorial theory.

Write partitions γ as nonincreasing sequences $\gamma = (\gamma_1, \gamma_2, \ldots)$, ignoring trailing zeroes, with length $l(\gamma) = \#\{i \mid \gamma_i \neq 0\}$ and magnitude $|\gamma| = \gamma_1 + \gamma_2 + \cdots = \text{degree}(s_{\gamma})$. Also write $V_{\gamma}^{[n]}$, rather than V_{γ} .

Then $m_{\lambda}^{\mu}(q) = 0$ unless $|\lambda| - |\mu| = kn$, some k, in which case $m_{\lambda}^{\mu}(q) = K_{\lambda,\pi}(q)$, the Kostka-Foulkes polynomial attached to Young tableaux of shape λ and weight $\pi = \mu + (k^n)$, by [M, III, 6, Example 3].

Given partitions α and β with $l(\alpha) + l(\beta) \leq n$, we defined $V_{\alpha,\beta}^{[n]}$ as the Cartan piece in $V_{\alpha}^{[n]} \otimes (V_{\beta}^{[n]})^*$, i.e., the irreducible \mathfrak{sl}_n -component generated by the tensor product of the highest weight vectors in each factor. It follows that $V_{\alpha,\beta}^{[n]} = V_{\gamma}^{[n]}$ for γ the componentwise sum (put $s = l(\alpha)$, $t = l(\beta)$):

$$\gamma = \operatorname{prt}_n(\alpha, \beta) := \left(\alpha_1, \dots, \alpha_s, \underbrace{0, \dots, 0}_{n-s-t}, -\beta_t, \dots, \beta_1\right) + \left(\underbrace{\beta_1, \dots, \beta_1}_n\right).$$

For example, $\mathbf{C} = V_{(0),(0)}^{[n]}$, and $\mathfrak{g} = V_{(1),(1)}^{[n]}$.

LEMMA 3.1. Fix $n \geq 1$. Then the $V_{\alpha,\beta}^{[n]}$, where α and β satisfy $l(\alpha) + l(\beta) \leq n$ and $|\alpha| = |\beta|$, form an exhaustive, repetition-free list of the irreducible finite-dimensional representations of PGL_n .

4. Stability for PGL_n harmonics. Stability was our original reason for forming the $V_{\alpha,\beta}^{[n]}$. Write H_n^p for the degree p harmonics.

THEOREM 4.1. Fix $p \geq 0$. Then the number of irreducible PGL_n -components of H_n^p is constant for $n \geq 2p$. Moreover, the decomposition stabilizes: $V_{\alpha,\beta}^{[n]}$ occurs in H_n^p only when $r = |\alpha| = |\beta| \leq p$, and $\langle V_{\alpha,\beta}^{[n]}, H_n^p \rangle$ stabilizes for $n \geq p + r$. Thus, for some finite set J^p of partition pairs of common magnitude and some integers $c_{\alpha,\beta}^p$,

$$H_n^p \simeq igoplus_{(lpha,eta) \in J^p} c_{lpha,eta}^p V_{lpha,eta}^{[n]}, \quad extit{for } n \geq 2p.$$

Our original proof worked by a combinatorial analysis of the pieces in $S(\operatorname{End} \mathbf{C}^n)$ using the Cauchy and Littlewood-Richardson rules. We, R. Stanley, and P. Hanlon then studied the stable series $\lim_{n\to\infty} F(V_{\alpha,\beta}^{[n]})$. See [S, **Hn**, and **G2**].

The key question raised by 4.1 is the determination of the $F(V_{\alpha,\beta}^{[n]})$ as functions of two variables q and n (with $n \ge l(\alpha) + l(\beta)$ always implicit).

For each value of $n, F(V_{\alpha,\beta}^{[n]}) \in \mathbf{Z}[q]$ is controlled by the partitions $\lambda = \operatorname{prt}_n(\alpha,\beta)$ and $\mu = (\beta_1^n)$ of magnitude $n\beta_1$. Precisely, $F(V_{\alpha,\beta}^{[n]}) = K_{\lambda,\mu}(q)$ (this follows by combining [Hs, Theorem 1] with [M, III, 6, Example 3]).

However, in §5 we prove that $F(V_{\alpha,\beta}^{[n]})$ as a function of q and n is really "controlled" just by α and β (symmetrically, as $F(V_{\alpha,\beta}^{[n]}) = F(V_{\beta,\alpha}^{[n]})$). Given a partition α , let $h_1(\alpha), \ldots, h_r(\alpha)$ be its hook numbers and $\tilde{\alpha}$ its conjugate partition (see $[\mathbf{M}, \mathbf{I}, \mathbf{1}]$). Set $e(\alpha) := \sum_{i \geq 1} i\alpha_i$. Previously, we knew only

PROPOSITION 4.2. Assume $|\alpha| = r$.

(i) If $\beta = (1^r)$, then

$$F(V_{\alpha,\beta}^{[n]}) = q^{e(\tilde{\alpha})} \prod_{i=1}^r (1 - q^{n-r-\tilde{\alpha}_i+i})/(1 - q^{h_i(\alpha)}).$$

(ii) If
$$\beta = (r)$$
, then $F(V_{\alpha,\beta}^{[n]}) = s_{\alpha}(q,\ldots,q^{n-1})$.

5. A formula for $F(V_{\alpha,\beta}^{[n]})$. Let us extend the $K_{\lambda,\mu}(q)$ to skew-partitions α/π (cf. [M, I, 1.5]). Although the latter are not partitions, they behave as such. The skew-Schur function is defined by $s_{\alpha/\pi} = \sum_{\gamma} \langle s_{\pi} s_{\gamma}, s_{\alpha} \rangle s_{\gamma}$. Now define $K_{\alpha/\pi,\theta}(q)$ as the coefficient of P_{θ} in $s_{\alpha/\pi}$. Set

$$b_{\theta}(q) := \prod_{i>1} (1-q) \cdots (1-q^{m_i}), \quad \text{for } \theta = (i^{m_i}); \qquad b_{(0)} := 1.$$

THEOREM 5.1. Fix α and β with $|\alpha| = |\beta| = r$. Then

$$F(V_{\alpha,\beta}^{[n]}) = \sum_{\substack{\pi,\theta \\ |\pi| + |\theta| = r.}} (-1)^{|\pi|} K_{\alpha/\pi,\theta}(q) K_{\beta/\tilde{\pi},\theta}(q) \frac{(1-q^n)\cdots(1-q^{n-l(\theta)+1})}{b_{\theta}(q)}.$$

To prove this, we express $V_{\alpha,\beta}^{[n]}$ in terms of the $V_{\gamma}^{[n]} \otimes (V_{\delta}^{[n]})^*$ using essentially a formula of Littlewood, and then apply 2.4.

Theorem 5.1 leads to new, unified proofs of several old results, among them 4.1, 4.2, and the stable theorem [S, 8.1] proved by Stanley. But mainly, 5.1 gives the first real means for computing the $F(V_{\alpha,\beta}^{[n]})$.

COROLLARY 5.2. For some polynomial $g^{\alpha,\beta}(q,z)$ over \mathbb{Z} ,

$$F(V_{\alpha,\beta}^{[n]}) = \frac{g^{\alpha,\beta}(q,q^{n-r+1})}{(1-q)\cdots(1-q^r)}.$$

Moreover,

$$\frac{g^{\alpha,\beta}(q,z)}{(1-q)\cdots(1-q^r)} = \sum_{i=0}^r c_i(q) \frac{(1-q^{r-1}z)\cdots(1-q^{r-i}z)}{(1-q)\cdots(1-q^i)},$$

for some $c_i(q) \in \mathbf{Z}[q]$.

We have some conjectures on the form of the $g^{\alpha,\beta}(q,z)$. The examples below, done by hand, are new; the first is an old conjecture. Define

$$\begin{bmatrix} c_1 & \cdots & c_r \\ d_1 & \cdots & d_r \end{bmatrix}_q := \frac{(1-q^{c_1})\cdots(1-q^{c_r})}{(1-q^{d_1})\cdots(1-q^{d_r})}, \quad \text{for } c_i, d_i \in \mathbf{Z}^+.$$

We refrain from thinking about these unless they are polynomials in q.

EXAMPLE 5.3. If $\alpha = \beta = (2, 1)$, then 5.1 yields

$$F(V_{\alpha,\beta}^{[n]}) = q^3 \begin{bmatrix} n+1 & n-1 & n-3 \\ 1 & 1 & 3 \end{bmatrix}_q + q^5 \begin{bmatrix} n-1 & n-2 & n-3 \\ 1 & 1 & 3 \end{bmatrix}_q.$$

EXAMPLE 5.4. Let us find $F(V_{\gamma}^{[6]})$ when $\gamma=(6,4,1,1)$. Then $\gamma=\operatorname{prt}_{6}(\alpha,\beta)$, for $\alpha=(4,2)$ and $\beta=(2,2,1,1)$. 5.1 gives

$$\begin{split} F(V_{\alpha,\beta}^{[n]}) &= q^9 \begin{bmatrix} n+2 & n+1 & n-1 & n-2 & n-4 & n-5 \\ 1 & 1 & 2 & 2 & 4 & 5 \end{bmatrix}_q \\ &+ q^{12} \begin{bmatrix} n+2 & n-1 & n-2 & n-3 & n-4 & n-5 \\ 1 & 1 & 2 & 2 & 4 & 5 \end{bmatrix}_q \\ &+ q^{15} \begin{bmatrix} n-1 & n-2 & n-2 & n-3 & n-4 & n-5 \\ 1 & 1 & 2 & 2 & 4 & 5 \end{bmatrix}_q \\ &+ (q^9+q^{10}+q^{11}) \begin{bmatrix} n & n-1 & n-2 & n-3 & n-4 & n-5 \\ 1 & 1 & 2 & 2 & 2 & 5 \end{bmatrix}_q. \end{split}$$

So, at n=6, $F(V_{\pi}^{[6]})=2q^9+3q^{10}+7q^{11}+9q^{12}+13q^{13}+13q^{14}+15q^{15}+12q^{16}+11q^{17}+7q^{18}+5q^{19}+2q^{20}+q^{21}$.

ACKNOWLEDGMENT. I warmly thank University of Paris VI, I.H.E.S., and Max-Planck-Institut for their hospitality.

REFERENCES

[FP] E. M. Friedlander and B. J. Parshall, On the cohomology of algebraic and related finite groups, Invent. Math. 74 (1983), 85-117.

[G1] R. K. Gupta, Characters and the q-analog of weight multiplicity, I.H.E.S. preprint M/86/6 (submitted for publication).

[G2] R. K. Gupta, Stability of polynomial powers of gln (in preparation).

[Hn] P. Hanlon, On the decomposition of the tensor algebra of the classical Lie algebras, Adv. in Math. 56 (1985), 238-282.

[Hs] W. H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), 179-182.

[Ka] S. Kato, Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. Math. 66 (1982), 461-468.

[K] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.

[L] G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, Analyse et Topologie sur les Espaces Singuliers (II-III), Astérisque 101-102 (1983), 208-227.

[M] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.

[S] R. Stanley, The stable behavior of some characters of $\mathrm{SL}(n,C)$, Linear and Multilinear Algebra 16 (1984), 3–27.

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912