EXPONENTIAL SUMS AND NEWTON POLYHEDRA

ALAN ADOLPHSON AND STEVEN SPERBER

Let p be a prime number and let k denote the field of $q=p^{a}$ elements. Fix a nontrivial additive character $\Psi: k \rightarrow \mathbf{Q}\left(\varsigma_{p}\right)^{\times}$. Given a variety V of dimension n and a regular function f on V, with both V and f defined over k, one can define an exponential sum

$$
\begin{equation*}
S(V, f)=\sum_{x \in V(k)} \Psi(f(x)) \tag{1}
\end{equation*}
$$

where $V(k)$ denotes the k-rational points of V. It is a classical problem to find conditions on V and f that will imply a good estimate for $|S(V, f)|$. By "good estimate" we mean an inequality of the form

$$
\begin{equation*}
|S(V, f)| \leq C \sqrt{q}^{n} \tag{2}
\end{equation*}
$$

where C is a constant depending on V and f but not on q.
Deligne's fundamental theorem [3] reduces the problem of estimating the archimedean size of exponential sums to the problem of computing certain associated l-adic cohomology groups. Let \mathbf{A}^{n} denote affine n-space over k and let $\left(\mathbf{G}_{m}\right)^{n}$ denote the product of n copies of the multiplicative group \mathbf{G}_{m} over k. The purpose of this note is to report on some general criteria, when $V=\left(\mathbf{G}_{m}\right)^{n}$ or \mathbf{A}^{n}, that allow us to calculate this cohomology and hence obtain sharp archimedean estimates for the corresponding exponential sums. These same criteria allow us to obtain apparently sharp p-adic estimates for the exponential sums as well, although space limitations prevent us from describing them here. Connections between the p-adic theory and Newton polyhedra already appear in [$\mathbf{7}$ and 8].

A novel feature of our work is the use of Dwork cohomology [4, 5] to compute l-adic cohomology. The results of this note have not so far been obtainable by purely l-adic methods. Complete proofs and references will appear elsewhere. We are indebted to B. Dwork and N. Katz for many helpful discussions.

1. Statement of results. Let k_{r} denote the extension of k of degree r and let $\operatorname{Tr}_{r}: k_{r} \rightarrow k$ be the trace map. Let \bar{k} denote the algebraic closure of k. Set

$$
\begin{equation*}
S_{r}(V, f)=\sum_{x \in V\left(k_{r}\right)} \Psi\left(\operatorname{Tr}_{r} f(x)\right) \tag{3}
\end{equation*}
$$

[^0]where $V\left(k_{r}\right)$ denotes the k_{r}-rational points of V. Define the associated L function $L(V, f ; t)$ by
\[

$$
\begin{equation*}
L(V, f ; t)=\exp \left(\sum_{r=1}^{\infty} S_{r}(V, f) t^{r} / r\right) \in \mathbf{Q}\left(\varsigma_{p}\right)[[t]] \tag{4}
\end{equation*}
$$

\]

It is well known that for every prime number $l \neq p$ there is a lisse, rankone, l-adic étale sheaf $\mathcal{L}_{\Psi}(f)$ on V whose associated L-function is identical to $L(V, f ; t)$. By Grothendieck's Lefschetz trace formula and Deligne's fundamental theorem, if

$$
\begin{equation*}
H_{c}^{i}\left(V \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)=0 \quad \text { for } i \neq n \tag{5}
\end{equation*}
$$

then one obtains the estimate

$$
\begin{equation*}
\left|S_{r}(V, f)\right| \leq\left(\operatorname{dim} H_{c}^{n}\left(V \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)\right) \sqrt{q}^{r n} \tag{6}
\end{equation*}
$$

(where $H_{c}^{i}\left(V \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)$ denotes l-adic cohomology with proper supports). When $V=\left(\mathbf{G}_{m}\right)^{n}$ or \mathbf{A}^{n}, we shall give conditions on f that allow us to deduce (5) and give a simple formula for $\operatorname{dim} H_{c}^{n}\left(V \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)$.

Consider first the case $V=\left(\mathbf{G}_{m}\right)^{n}$. The regular functions on V defined over k are the Laurent polynomials with coefficients in k, i.e., elements of $k\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$. For $j=\left(j_{1}, \ldots, j_{n}\right) \in \mathbf{Z}^{n}$, let $x^{j}=x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}$. \mathbf{A} Laurent polynomial f over k can be written

$$
\begin{equation*}
f=\sum_{j \in J} a_{j} x^{j} \tag{7}
\end{equation*}
$$

where J is a finite subset of \mathbf{Z}^{n} and $a_{j} \in k^{\times}$. We define the Newton polyhedron $\Delta(f)$ of f to be the convex closure in \mathbf{R}^{n} of the set $J \cup\{(0, \ldots, 0)\}$. For each face σ of $\Delta(f)$, define a Laurent polynomial f_{σ} by

$$
\begin{equation*}
f_{\sigma}=\sum_{j \in \sigma \cap J} a_{j} x^{j} \tag{8}
\end{equation*}
$$

Call f nondegenerate with respect to $\Delta(f)$ (Kouchnirenko [6]) if for every face σ of $\Delta(f)$ that does not contain the origin, $\partial f_{\sigma} / \partial x_{1}, \ldots, \partial f_{\sigma} / \partial x_{n}$ have no common zero in $\left(\bar{k}^{\times}\right)^{n}$. The set of all nondegenerate polynomials having a given Newton polyhedron is Zariski open in the set of all polynomials having that Newton polyhedron, except possibly if the characteristic of k lies in a certain finite set which depends on the Newton polyhedron. We define the dimension of $\Delta(f)$ to be the dimension of the smallest subspace of \mathbf{R}^{n} containing $\Delta(f)$. Let $V(f)$ denote the volume of $\Delta(f)$ with respect to Lebesgue measure on \mathbf{R}^{n}.

THEOREM 1. Let Δ be an n-dimensional convex polyhedron in \mathbf{R}^{n} with vertices in \mathbf{Z}^{n} that contains the origin. There is a finite set of rational primes S_{Δ} such that the following holds: If $\operatorname{char}(k) \notin S_{\Delta}, f \in k\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$ with $\Delta(f)=\Delta$, and f is nondegenerate with respect to $\Delta(f)$, then
(i) $H_{c}^{i}\left(\left(\mathbf{G}_{m}\right)^{n} \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)=0$ if $i \neq n$;
(ii) $\operatorname{dim} H_{c}^{n}\left(\left(\mathbf{G}_{m}\right)^{n} \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)=n!V(f)$.

If in addition the origin is an interior point of Δ, then
(iii) $H_{c}^{n}\left(\left(\mathbf{G}_{m}\right)^{n} \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)$ is pure of weight n.

Corollary. Under the hypotheses of Theorem 1,

$$
\left|S\left(\left(\mathbf{G}_{m}\right)^{n}, f\right)\right| \leq n!V(f) \sqrt{q}^{n}
$$

Proof. Using the ideal theory of [6], we are able to develop a cohomology theory along the lines of [4] and [5] to show that $L\left(\left(\mathbf{G}_{m}\right)^{n}, f ; t\right)^{(-1)^{n-1}}$ is a polynomial of degree $n!V(f)$ and obtain p-adic estimates for its roots. The proof then proceeds by induction on n. After an invertible change of coordinates, one may regard f as a one-parameter family of Laurent polynomials in $n-1$ variables, each satisfying the induction hypothesis and containing the origin in the interior of its Newton polyhedron. Applying basic theorems of l-adic cohomology shows that $H_{c}^{i}=0$ except possibly in dimensions n and $n+1$. Corollaire 1.4.4 of [3] and the fact that $L\left(\left(\mathbf{G}_{m}\right)^{n}, f ; t\right)^{(-1)^{n-1}}$ is a polynomial show that $H_{c}^{n+1}=0$. The p-adic estimate for the roots, Deligne's fundamental theorem [3], and the product formula for valuations then imply purity.

We conjecture that Theorem 1 remains true without restriction on the characteristic of k. This can be verified if $n=2$ and in many other cases (see the examples at the end of this note).

We now turn to the case $V=\mathbf{A}^{n}, f \in k\left[x_{1}, \ldots, x_{n}\right]$. Since an ordinary polynomial may also be regarded as a Laurent polynomial, all our previous definitions concerning the Newton polyhedron make sense in this context. We call $f \in k\left[x_{1}, \ldots, x_{n}\right]$ commode if for each $i=1, \ldots, n, f$ contains a term $\gamma_{i} x_{i}^{d_{i}}$ with $\gamma_{i} \in k^{\times}, d_{i}>0$. For each subset $A \subseteq\{1, \ldots, n\}$, let X_{A} be the subspace of \mathbf{R}^{n} where $x_{i}=0$ for all $i \notin A$. Let $V_{A}(f)$ be the volume of $\Delta(f) \cap X_{A}$, computed with respect to Lebesgue measure on X_{A} normalized so that a fundamental domain for $\mathbf{Z}^{n} \cap X_{A}$ has volume 1. Let $|A|$ denote the cardinality of A. Define the Newton number $\nu(f)$ by the formula

$$
\begin{equation*}
\nu(f)=\sum_{A \subseteq\{1, \ldots, n\}}(-1)^{n-|A|}|A|!V_{A}(f) . \tag{9}
\end{equation*}
$$

Let \mathbf{R}_{+}denote the nonnegative real numbers.
THEOREM 2. Let Δ be a convex polyhedron in $\left(\mathbf{R}_{+}\right)^{n}$ with vertices in \mathbf{Z}^{n} that has a vertex at the origin and on each of the coordinate axes. There is a finite set of rational primes S_{Δ} such that the following holds: If $\operatorname{char}(k) \notin S_{\Delta}$, $f \in k\left[x_{1}, \ldots, x_{n}\right]$ with $\Delta(f)=\Delta$, and f is nondegenerate with respect to $\Delta(f)$, then $L\left(\mathbf{A}^{n}, f ; t\right)^{(-1)^{n-1}}$ is a polynomial of degree $\nu(f)$, all of whose reciprocal roots are algebraic integers pure of weight n.

COROLLARY. Under the hypotheses of Theorem 2, $\left|S\left(\mathbf{A}^{n}, f\right)\right| \leq \nu(f) \sqrt{q}^{n}$.
PROOF. The fact that $L\left(\mathbf{A}^{n}, f ; t\right)^{(-1)^{n-1}}$ is a polynomial is a consequence of the p-adic theory. Theorem 2 then follows from Theorem 1 by the standard relations between exponential sums over \mathbf{A}^{n} and $\left(\mathbf{G}_{m}\right)^{n}$.

We conjecture that Theorem 2 remains true without restriction on the characteristic of k. This can be verified if $n=2$ and in many other cases
(see Theorem 3 below). Of course, we believe that there is a cohomological explanation for this result:

CONJECTURE. If $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is commode and nondegenerate with respect to $\Delta(f)$, then
(i) $H_{c}^{i}\left(\mathbf{A}^{n} \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)=0$ if $i \neq n$;
(ii) $\operatorname{dim} H_{c}^{n}\left(\mathbf{A}^{n} \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)=\nu(f)$;
(iii) $H_{c}^{n}\left(\mathbf{A}^{n} \otimes_{k} \bar{k}, \mathcal{L}_{\Psi}(f)\right)$ is pure of weight n.

We can prove this conjecture provided $\Delta(f)$ has a somewhat special form.
THEOREM 3. Suppose $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is commode and nondegenerate with respect to $\Delta(f)$. Assume in addition that for each codimension-one face σ of $\Delta(f)$ that does not contain the origin, all coordinates of the exterior normal vector to σ with respect to the standard basis are positive (where the exterior normal vector is the one pointing out of $\Delta(f)$). Then all conclusions of the Conjecture hold. In particular, we have

$$
\left|S\left(\mathbf{A}^{n}, f\right)\right| \leq \nu(f) \sqrt{q}^{n}
$$

Proof. The proof is identical to the proof of Theorem 1, the point being that one can simply specialize one of the variables to regard f as a oneparameter family of polynomials, each satisfying the induction hypothesis.

Examples. The Laurent polynomial

$$
\begin{equation*}
f=\gamma_{1} x_{1}^{d_{1}}+\cdots+\gamma_{n} x_{n}^{d_{n}}+\frac{\gamma_{n+1}}{x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}} \tag{10}
\end{equation*}
$$

where the γ_{i} lie in k^{\times}and the d_{i} and e_{j} are positive integers prime to p, satisfies the hypotheses of Theorem 1 (one can show in addition that no restriction on $\operatorname{char}(k)$ is necessary) and $n!V(f)=\left(\prod_{i=1}^{n} d_{i}\right)\left(1+\sum_{i=1}^{n} e_{i} / d_{i}\right)$. Thus

$$
\begin{align*}
\mid S\left(\left(\mathbf{G}_{m}\right)^{n}, \gamma_{1} x_{1}^{d_{1}}\right. & \left.+\cdots+\gamma_{n} x_{n}^{d_{n}}+\frac{\gamma_{n+1}}{x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}}\right) \mid \tag{11}\\
& \leq\left(\prod_{i=1}^{n} d_{i}\right)\left(1+\sum_{i=1}^{n} \frac{e_{i}}{d_{i}}\right) \sqrt{q}^{n} .
\end{align*}
$$

See Carpentier [1] for a p-adic study of this exponential sum.
Consider the polynomial

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\gamma_{1} x_{1}^{d_{1}}+\cdots+\gamma_{n} x_{n}^{d_{n}}+g\left(x_{1}, \ldots, x_{n}\right) \tag{12}
\end{equation*}
$$

where g is chosen subject to the restrictions that $\Delta(f)$ be the simplex with vertices at the origin and at $\left(d_{1}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, d_{n}\right)$ and that f be nondegenerate with respect to $\Delta(f)$. Then f satisfies the hypotheses of Theorem 3 and $\nu(f)=\prod_{i=1}^{n}\left(d_{i}-1\right)$, hence

$$
\begin{equation*}
\left|S\left(\mathbf{A}^{n}, f\right)\right| \leq\left(\prod_{i=1}^{n}\left(d_{i}-1\right)\right) \sqrt{q}^{n} \tag{13}
\end{equation*}
$$

It can be shown that this result includes Deligne's theorem [2, Théorème 8.4] as the special case where $d_{1}=\cdots=d_{n}$.

REFERENCES

1. M. Carpentier, p-Adic cohomology of generalized hyperkloosterman sums, Doctoral thesis, University of Minnesota (August, 1985).
2. P. Deligne, La conjecture de Weil. I, Publ Math. I.H.E.S. 43 (1974), 273-307.
3. __, La conjecture de Weil. II, Publ. Math. I.H.E.S. 52 (1980), 137-252.
4. B. Dwork, On the zeta function of a hypersurface, Publ. Math. I.H.E.S. 12 (1962), 5-68.
5.
6. A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
7. S. Sperber and A. Adolphson, Newton polyhedra and the degree of the L-function associated to an exponential sum, Invent. Math. (to appear).
8. , p-Adic estimates for exponential sums and the theorem of Chevalley-Warning, Ann. Sci. École Norm. Sup. (to appear).

Department of Mathematics, Oklahoma State University, Stillwater, OKlahoma 74078

School of Mathematics, University of Minnesota, Minneapolis, MinNESOTA 55455

[^0]: Received by the editors November 1, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11L40; Secondary 14F20, 14F30.

 First author partially supported by NSF Grant No. DMS-8401723; second author partially supported by NSF Grant No. DMS-8301453.

