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EXPONENTIAL SUMS AND NEWTON POLYHEDRA 

ALAN ADOLPHSON AND STEVEN SPERBER 

Let p be a prime number and let k denote the field of q = pa elements. 
Fix a nontrivial additive character V: k —• Q(cp)x . Given a variety V of 
dimension n and a regular function ƒ on V, with both V and ƒ defined over 
&, one can define an exponential sum 

(i) s<yj)= £ »(ƒ(*)), 
xev(k) 

where V(k) denotes the fc-rational points of V. It is a classical problem to 
find conditions on V and ƒ that will imply a good estimate for |5(V, / ) | . By 
"good estimate" we mean an inequality of the form 

(2) \S(V,f)\<C^qn, 

where C is a constant depending on V and ƒ but not on q. 
Deligne's fundamental theorem [3] reduces the problem of estimating the 

archimedean size of exponential sums to the problem of computing certain 
associated /-adic cohomology groups. Let A n denote affine n-space over k 
and let ( G m ) n denote the product of n copies of the multiplicative group 
G m over k. The purpose of this note is to report on some general criteria, 
when V = ( G m ) n or A n , that allow us to calculate this cohomology and 
hence obtain sharp archimedean estimates for the corresponding exponential 
sums. These same criteria allow us to obtain apparently sharp p-adic estimates 
for the exponential sums as well, although space limitations prevent us from 
describing them here. Connections between the p-adic theory and Newton 
polyhedra already appear in [7 and 8]. 

A novel feature of our work is the use of Dwork cohomology [4, 5] to 
compute /-adic cohomology. The results of this note have not so far been 
obtainable by purely /-adic methods. Complete proofs and references will 
appear elsewhere. We are indebted to B. Dwork and N. Katz for many helpful 
discussions. 

1. Statement of results. Let kr denote the extension of k of degree r 
and let Trr : kr —• k be the trace map. Let k denote the algebraic closure of 
k. Set 

(3) Sr(VJ)= Y, «C^r ƒ(*)), 
xev(kr) 
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where V(kr) denotes the fcr-rational points of V. Define the associated L-
function L(V, ƒ ; t) by 

(4) L(V, ƒ; t) = exp (£ Sr(V, f)f > J € Q(fr)[(t]]. 

It is well known that for every prime number / ^ p there is a lisse, rank-
one, /-adic étale sheaf £#(ƒ) on V whose associated L-function is identical 
to L(V, ƒ; t). By Grothendieck's Lefschetz trace formula and Deligne's funda­
mental theorem, if 

(5) Hi{V®kk,C*(f)) = 0 f o r ^ n , 

then one obtains the estimate 

(6) \Sr(V,f)\ < (dimtfc"(^®fcfc,.C*(/))),/9rn 

(where H*(V <g)fc &, £*(ƒ)) denotes Z-adic cohomology with proper supports). 
When V = ( G m ) n or A n , we shall give conditions on ƒ that allow us to 
deduce (5) and give a simple formula for dim H™(V ®k fc, £*(ƒ)). 

Consider first the case V = (G m ) n . The regular functions on V defined 
over k are the Laurent polynomials with coefficients in &, i.e., elements of 
fc[xi,x^1,...,xn,x-1]. F o r i = ( j i , . . . , jn) € Zn , let xj = s f - - - 2 # . A 
Laurent polynomial ƒ over k can be written 

(7) / = X>M 
3'€J 

where J is a finite subset of Z n and a,j € kx. We define the Newton polyhedron 
A( ƒ) of ƒ to be the convex closure in R n of the set J U {(0, . . . , 0)}. For each 
face G of A(/) , define a Laurent polynomial fa by 

(8) /»= £ «i*-
j€(rnJ 

Call ƒ nondegenerate with respect to A(/) (Kouchnirenko [6]) if for every face 
a of A(/) that does not contain the origin, dfa/dx\,... ,dfa/dxn have no 
common zero in (k ) n . The set of all nondegenerate polynomials having a 
given Newton polyhedron is Zariski open in the set of all polynomials having 
that Newton polyhedron, except possibly if the characteristic of k lies in a 
certain finite set which depends on the Newton polyhedron. We define the 
dimension of A(/) to be the dimension of the smallest subspace of R n con­
taining A(/) . Let V(f) denote the volume of A(/) with respect to Lebesgue 
measure on R n . 

THEOREM 1. Let A be an n-dimensional convex polyhedron in R n with 
vertices in Z n that contains the origin. There is a finite set of rational primes 
SA such that the following holds: If char(fc) & SA, ƒ € k[xi, x^ 1 , . . . , xn, x"1] 
with A(/) = A, and f is nondegenerate with respect to A(/) , then 

(i) H*((Gm)n ®k *, £*(/)) = 0ifi^ n; 
(ii) dimfl?((Gm)w ®fcfc, £*(ƒ)) = n\V(f). 
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If in addition the origin is an interior point of A, then 
(iii) H?((Gm)n ®k fc, £*(ƒ)) is pure of weight n. 

COROLLARY. Under the hypotheses of Theorem 1, 

\S((Gm)n,f)\<n\V(f)Jqn. 
PROOF. Using the ideal theory of [6], we are able to develop a cohomology 

theory along the lines of [4] and [5] to show that L((Gm ) n , f;t)(~^n is a 
polynomial of degree n! V(f) and obtain p-adic estimates for its roots. The 
proof then proceeds by induction on n. After an invertible change of coordi­
nates, one may regard ƒ as a one-parameter family of Laurent polynomials in 
n — 1 variables, each satisfying the induction hypothesis and containing the 
origin in the interior of its Newton polyhedron. Applying basic theorems of 
/-adic cohomology shows that H%

c = 0 except possibly in dimensions n and 
n + 1. Corollaire 1.4.4 of [3] and the fact that L ( ( G m ) n , / j t ) ^ 1 ^ " 1 is a 
polynomial show that #™+1 = 0. The p-adic estimate for the roots, Deligne's 
fundamental theorem [3], and the product formula for valuations then imply 
purity. 

We conjecture that Theorem 1 remains true without restriction on the 
characteristic of k. This can be verified if n = 2 and in many other cases (see 
the examples at the end of this note). 

We now turn to the case V = A n , ƒ G fc[#i,..., xn]. Since an ordinary 
polynomial may also be regarded as a Laurent polynomial, all our previous 
definitions concerning the Newton polyhedron make sense in this context. We 
call ƒ G fc[xi,..., xn] commode if for each i = 1 , . . . , n, ƒ contains a term 
liXj* with 7i € fcx, di > 0. For each subset A C { 1 , , . . ,n} , let XA be the 
subspace of R n where Xi = 0 for all i £ A. Let VAU) De ^ne volume of 
A(/) fl XA, computed with respect to Lebesgue measure on XA normalized 
so that a fundamental domain for Zn D XA has volume 1. Let \A\ denote the 
cardinality of A. Define the Newton number v(f) by the formula 

(9) !/(ƒ)= £ ( - l ) n -W|A| !V A ( / ) . 
AÇ{l,...,n} 

Let R+ denote the nonnegative real numbers. 

THEOREM 2. Let A be a convex polyhedron in (R+)n with vertices in Zn 

that has a vertex at the origin and on each of the coordinate axes. There is a 
finite set of rational primes SA such that the following holds: If char(fc) ^ 5A , 
f G fc[xi,..., xn] with A(/) = A, and ƒ is nondegenerate with respect to A(/) , 
then L(An, ƒ ; t)^"1^' is a polynomial of degree v{f), all of whose reciprocal 
roots are algebraic integers pure of weight n. 

COROLLARY. Under the hypotheses of Theorem 2, |5(An , / ) | < v(f)y/qn. 

PROOF. The fact that L(An , ƒ; J^"1)*1- is a polynomial is a consequence 
of the p-adic theory. Theorem 2 then follows from Theorem 1 by the standard 
relations between exponential sums over A n and (G m ) n . 

We conjecture that Theorem 2 remains true without restriction on the 
characteristic of k. This can be verified if n = 2 and in many other cases 
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(see Theorem 3 below). Of course, we believe that there is a cohomological 
explanation for this result: 

CONJECTURE. If f E k[x\,.. .,xn) is commode and nondegenerate with 
respect to A(f), then 

(i) H*(An ®k fc, £*(ƒ)) = 0ifi^n; 
(ii) dimfÇ(Aw ®* *, £*(ƒ)) = !/(ƒ); 
(iii) H"(An (8)fc A;, £*(ƒ)) is pwre o/ weight n. 

We can prove this conjecture provided A(/) has a somewhat special form. 

THEOREM 3. Suppose f G fc[xi,...,xn] is commode and nondegenerate 
with respect to A( / ) . Assume in addition that for each codimension-one face 
o of A(/) £/ia£ does not contain the origin, all coordinates of the exterior 
normal vector to a with respect to the standard basis are positive (where the 
exterior normal vector is the one pointing out of A(/)) . Then all conclusions 
of the Conjecture hold. In particular, we have 

\S(An,f)\<v(f)y/q». 

PROOF. The proof is identical to the proof of Theorem 1, the point being 
that one can simply specialize one of the variables to regard ƒ as a one-
parameter family of polynomials, each satisfying the induction hypothesis. 

EXAMPLES. The Laurent polynomial 

4l _L L *v >rdn J- ^ n + l 
«.ei en 
JU-i . . . JLfi 

(io) f = llXfi + ... + lnXdr+ ^ 

where the ^ lie in kx and the d{ and ey are positive integers prime to p, satis­
fies the hypotheses of Theorem 1 (one can show in addition that no restriction 
on char(fc) is necessary) and n\V(f) = (fliLi ^ X * + S?=i c*/^*)- Thus 

s ( (Gm)", llXt + • • •+inxt + Jn+\n) (11) 

See Carpentier [1] for a p-adic study of this exponential sum. 
Consider the polynomial 

(12) / ( x i , . . . , x n ) = 7i^ix + -" + lnxin +g(xi,...,xn), 

where g is chosen subject to the restrictions that A(/) be the simplex with 
vertices at the origin and at (di, 0 , . . . , 0 ) , . . . , (0 , . . . , 0, dn) and that ƒ be 
nondegenerate with respect to A(/) . Then ƒ satisfies the hypotheses of 
Theorem 3 and u(f) = Yl™=1(di - 1), hence 

(13) \S{A«J)\<(f[(di-l)\y/qn. 

It can be shown that this result includes Deligne's theorem [2, Théorème 8.4] 
as the special case where d\ = • • • = dn. 
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