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ON THE TIME-OPTIMALITY 
OF BANG-BANG TRAJECTORIES IN R3 

HEINZ M. SCHAETTLER 

1. Introduction. We study the problem of time-optimal control for a 
system 

S: x = f(x) + u-g(x), \u\ < 1, i G R 3 , U € R 

where ƒ and g are smooth vector fields. Admissible controls are arbitrary 
measurable functions with values in [—1,4-1] and a trajectory of the system 
corresponding to a control u( ) is an absolutely continuous curve such that 
x(t) — f{x(t)) + u(t)g(x(t)) holds almost everywhere. 

In every optimal control problem the question of regularity of the solu­
tions comes up naturally. The standard existence theorems only prove the 
existence of an optimal solution within the class of measurable functions. 
Necessary conditions for optimality put certain restrictions on optimal con­
trols, in particular on their regularity properties. But, in general, they do not 
exclude a pathological behavior of optimal controls. In principle, the sets of 
discontinuities of an optimal control could even be a Cantor-like set with pos­
itive measure. On the other hand, certain regularity properties are necessary 
to construct a regular synthesis, i.e. to obtain sufficient conditions. For this 
one of the essential properties needed is that for every compact set K there 
exists an integer N = N(K) such that any time-optimal trajectory that lies 
in K is a concatenation of at most N "nice" pieces [3]. 

For our problem "nice" simply means trajectories corresponding to the con­
stant controls u = -hi and u = - 1 (bang arcs) or to a singular control (singular 
arc), which is a control usually with values in the interior of the control set 
and which satisfies certain compatibility conditions. (These are the possible 
candidates for time-optimal controls to which the necessary conditions of the 
Pontryagin maximum principle lead.) 

For smooth single-input control-linear systems in the plane Sussmann 
showed that generically every point has a neighborhood U such that time-
optimal trajectories that lie in U are finite concatenations of bang and singu­
lar arcs with a bound on the number of pieces [4]. This was the key element 
in the proof of the existence of a regular synthesis for basically arbitrary an­
alytic systems of this form in the plane [5, 6]. A major issue in the proof 
of these results is to exclude the optimality of bang-bang trajectories with 
a large number of switchings in small times. (A bang-bang trajectory is a 
concatenation of bang arcs.) Since Sussmann's argument depended heavily 
on being in R2 , even for the three-dimensional case so far only partial results 
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are known, due to Bressan [2] and Bonnard [1]. Here we announce a result 
which in a certain sense covers the least degenerate cases possible in R3. The 
proof will appear elsewhere [7]. 

2. The result. We identify E with the C00 map E = (ƒ, g) : R3 -> R6 

and we equip C°°(R3 ,R6) with the Whitney C°° topology. Let A be the 
open subset of systems E for which the vectors ƒ, g and [ƒ, g] are independent 
everywhere. Then we have 

THEOREM. For a generic system E E A every point has a neighborhood 
U such that a bang-bang trajectory that lies in U and has more than seven 
switchings is not time-optimal. D 

We will give a sketch of the proof (without any technical details) in the 
least degenerate case. Let p G R 3 and assume that /(p), ^(p), and [/,</](p) 
are independent. We let X = ƒ - g and Y = ƒ -h g and we express the third 
order brackets of X and Y as linear combinations of X, Y, and [X, Y]. 

[X, [X, Y]] = oiX + a2Y + a3[X, Y] = a f + • • •, 

[Y,[X,Y]]=61X + &2Y + fc3[X,Y]=/3/ + . . . . 

In the least degenerate case we also assume that a(p) ^ 0 and /?(p) ^ 0. We 
claim that p has a neighborhood U such that bang-bang trajectories that lie 
in U and have more than two switchings are not time-optimal. 

Let T be a YXYX-trajectory, i.e. a concatenation of a Y-arc, followed by 
a X-trajectory, another Y-arc, and one more X-arc. We call the initial point 
p and the switching points po, pi and P2- Let T\ and r2 be the times along the 
intermediate X and Y arcs respectively. We want to exclude the optimality 
of T beyond the third switching point p2- To do so, we compare T to another 
bang-bang trajectory of the form YXY which steers p to some point on T just 
after p2. It is possible to set up such a variation along T since the equation 

(*) p0e^xe^Ye^sX = p0e^Ye^xe^Y 

is solvable by smooth functions t i , £2, £3 of n , T2, s near the origin. (We 
use exponential notation for the flows of vector fields and we let the diffeo-
morphisms act on the right.) It turns out that the solutions U are positive 
functions provided T\ and r2 are positive. Therefore we get a trajectory of our 
system. We are interested in the difference of the times. Let 

A(S;TI ,T 2 ) = t i + t 2 + t 3 - T i " T 2 - n * . 
LEMMA. If Y is time-optimal, then necessarily A(0;ri,T2) = 0 and 

A(0;ri,T2) > 0, where the dot stands for differentiation with respect to s. D 

The first relation follows if we differentiate (*) with respect to s and use 
the fact that the switching points po, Pi, and P2 form a conjugate triple. This 
is merely a consequence of the Pontryagin maximum principle. The inequality 
is then obvious. 

To get applicable criteria, we compute an asymptotic expansion for A. We 
rewrite both sides of (*) in terms of canonical coordinates of the second kind 
and then compare the coefficients. The result is 

A(5;r1,r2) = rxr2 {-\S{OL(PÙTX + P(PO)T2 + 0(2)) + ^2(/?(p0)r2 + 0(2))} . 
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Here 0(2) stands for terms of order > 2 in the variables r\ and r^. So we get 
as necessary conditions near p, 

(I)a(po)ri+/3(po)tîi + 0 ( 2 ) = 0 , 
(II)/?(po)r2 + 0 ( 2 ) > 0 . 
By assumption a(p) and /3(p) do not vanish and so these terms are large 

relative to the times r» on a sufficiently small neighborhood of p. (Since ƒ (p) 
and g(p) are independent, we can assume that the times are small. The 
reason is that, once a time T has been fixed, then we can shrink U so that 
every trajectory of the system has to leave U within time T. Then our analysis 
applies on U.) Therefore it is clear that (I) cannot hold near p if a(p) and 
/3(p) have the same sign. If a(p) and /3(p) have opposite signs, then (I) need 
not be violated, but it implies that the times T\ and r<i are comparable (i.e. 
bounds T\ < CT2 and T<I < CT\ hold, where C is a constant depending only 
on a neighborhood of p, but not on the individual trajectory). Therefore, if 
/?(p) < 0, then (II) excludes the optimality of T as well. 

If a(p) < 0 and /3(p) > 0, then these conditions do not help. However, it 
turns out that this case is actually the easier one. Here we can even exclude 
the optimality of the FXY-concatenation with switching points po and p\. 
To do this, we show that R 3 is an approximating cone K at q for the set of 
points reachable from p within time T, where q = p\trY is a point on T just 
after p\ and T is the time along T from p to q. This implies then that T is 
not time-optimal beyond p\. 

The convex cone K is generated by the vectors 

-ƒ(«), -0 (9) , e- radK(</(Pi)), 

e-**dY(-[X,Y}(Pl)) and e - ' - a d y e - " a d X ( [ X , r ] ( P o ) ) . 

The first three vectors are variational vectors which arise when we delete time 
or when we interchange X and Y. The last two are variational vectors which 
can only be obtained at the bang-bang junctions via a variation of Lie type 
such as 

v(8) = Ple-8Xe3Ye8Xe-3Y = P l exp ( - ^ 2 [ X , Y] + 0 ( s 3 ) ) . 

This leads to -[X, Y](pi) and then we transport this vector to q. Similarly 
we obtain [X, Y](po) from the FX-junction, which leads to the last vector. If 
now r = 0, then we have 

e - n a d X ( [ X ) y ] ( p o ) ) = {X,Y}(Pl) + 0 ( n ) 

and the vector 

e-^adx([x,y](po)) - [x,r](pi) = n([x, [x,y]](Pl) + O(n)) 
= r i ( ( -a(pi ) + 0(ri))/(p!) + -..) 

has a positive /-coefficient. Therefore, for r — 0, these vectors generate R3 

as convex cone and this does not change for small r. 
This excludes the optimality of FXYX-trajectories. Using an input sym­

metry of E which interchanges X and F , it follows that also XyXY-trajector-
ies are not time-optimal near p. This proves the claim. 
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For more degenerate generic cases (i.e. when a(p) and/or /3(p) vanish), we 
need the higher-order terms in the asymptotic expansion for A and we also 
need more terms in the relation -a (p i ) + 0{T\) which is crucial for the ap­
proximating cone argument. For bang-bang trajectories with more switchings 
we then combine conditions to obtain applicable criteria for these cases as 
well. This becomes highly technical and we do not even attempt to outline 
the arguments here. 
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