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INDEX THEORY FOR TOEPLITZ OPERATORS 
ON BOUNDED SYMMETRIC DOMAINS 

HARALD UPMEIER 

In this note we give an index theory for Toeplitz operators on the Hardy 
space of the Shilov boundary of an arbitrary bounded symmetric domain. 
Our results generalize earlier work of Gohberg-Krein and Venugopalkrishna 
[12] for domains of rank 1 and of Berger-Coburn-Koranyi [1] for domains of 
rank 2. 

Bounded symmetric domains (Cartan domains, classical or exceptional) 
are the natural higher-dimensional analogues of the open unit disk. Each 
such domain is homogeneous under a semisimple Lie group of biholomorphic 
transformations and has an (essentially unique) realization as a convex cir­
cular domain which is conveniently described in Jordan algebraic terms: The 
underlying vector space Z « C n carries a Jordan triple product, denoted 
by (uyV^w) •-• {uv*w}, and the bounded symmetric domain D is the open 
unit ball of Z with respect to the "spectral norm" [7]. The basic example 
is the space Z = CpXq of rectangular matrices, with Jordan triple prod­
uct {uv*w} := (uv*w + wv*u)/2) giving rise to the "hyperbolic matrix ball" 
D = {z G Z: spectrum (z*z) < 1}. 

The symmetric domains of rank 1 are the (smooth) Hilbert balls in C n . For 
domains D of higher rank r, the boundary dD forms a nonsmooth "stratified 
space". In Jordan algebraic terms, the structure of dD can be described as 
follows: An element e € Z satisfying {ee*e} = e is called a tripotent. For 
matrices, the tripotents are just the partial isometries. Every tripotent e 
induces a splitting of Z into the "Peirce spaces" Z\(e) := {z G Z: {ee*z} = 
Xz} for A = 0 , ^ , 1 . The set 

(1) De:=DnZ0(e) 

is a bounded symmetric domain in Zo(e) and, by [7], the translated sets 
e + Dc , for nonzero tripotents e, constitute all boundary components ("faces") 
of D. For j < r, these components can be organized into smooth families, 
labeled by the compact manifold Sj of all tripotents of equal rank j . The 
Shilov boundary S of D coincides with Sr [7]. S is homogeneous under the 
connected linear automorphism group K of D and thus carries a if-invariant 
probability measure. For irreducible Z>, the same is true of the "partial Shilov 
boundaries" Sj. We assume in the following that D is irreducible. 

The Hardy space H2(S) over S and the dense subspace P(Z) of all polyno­
mials have been analyzed by W. Schmid [8], who showed that P(Z) has an iso-
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typic decomposition into inequivalent irreducible K-modules l£m, where m = 
(mi, . . . ,mr) describes all "signatures" of integers m\ > m2 > • • • > mr > 0. 
For j < r, let P3(Z) be the sum of all Em with m = (mi , . . . , m3;,0,..., 0). 
Denote by H2(Sj) the closed subspace of L2(Sj) defined by the tangential 
Cauchy-Riemann equations on Sj. Modifying the proof in [8], we get 

THEOREM 1. The restriction mapping Pj{Z) —• H2(Sj) is injective and 
dense, and the isotypic components 2£(mi,...,m.,,ov..,o) °f H2(Sj) occur only 
once in L2{Sj). 

By definition, the Toeplitz operator T(S)f with continuous "symbol func­
tion" ƒ G C(S) maps h G H2(S) to 7r5(//i), where TT5 : L

2{S) -> H2{S) is the 
orthogonal (Szegö) projection. By [10], the Toeplitz C*-algebra Ts generated 
by these operators has a composition series 

(2) {0} =: Jo C h C ••• C Ir C Ir+i := Ts 

of length r = rank(D), with subquotients Ij+i/Ij « C(Sj) ® K (j < r) and 
Ir+i/Ir ^ C(5). Here JC denotes the C*-algebra of all compact operators. 
In particular, the spectrum of Ts is precisely the set of all tripotents. For a 
tripotent e, the corresponding irreducible representation ae of Ts acts on the 
Hardy space H2(Se) of the Shilov boundary Se of the boundary component 
De (cf. (1)) and is uniquely determined by the property ae(T(S)f) = T{Se)fe 

for all ƒ G C(S). Here we put 

(3) fe(w):=f(e + w) 

for all w G Se. The product representation GJ := {ae: e E Sj} has the 
null-space J, and induces the subquotient isomorphism mentioned above. 

For 1 < j < r, (2) induces a C*-algebra extension 

(4) 0 - • C ( V i ) ® /C ̂  J i + i / J i - i ^ C(5,) ® /C -• 0, 

called the jft/i Toeplitz extension over S and denoted by TJ(S). Let r̂  be 
any completely positive cross-section of Cj (cf. [4]) and, using üC-theoretic 
notation, define the analytical j-index 

(5) Indj-.K'iS^^K^-x) 

by putting Indj(a) := Index(<Tj-i(Tj(a)) for every a G -K^1(S,
J) « [Sj,GLoo\. 

Note that rj(a) G 7s- is invertible modulo Ij and hence 0j-i(Tj(a)) is a 
continuous family of Fredholm operators over Sj-i (cf. [5]). For j = 1, we 
get the usual integer-valued Fredholm index. 

In order to describe (5) topologically, we compare (4) with a Toeplitz ex­
tension studied in [3]. The space Si of all minimal tripotents is a strictly pseu-
doconvex boundary in the singular analytic cone {z G Z: rank(^) < 1}. We 
can therefore consider "Boutet de Monvel type" Toeplitz operators T(Si)f 
on H2(Si) (cf. Theorem 1), with symbol ƒ G C(5i). Since Si is strictly 
pseudoconvex, these operators have compact commutators and thus define an 
extension of K by C(Si), denoted by r(Si). For j > 1, we apply this con­
struction to the spaces Sf := Si flZo(e), for e G Sj_i, and obtain the Toeplitz 
extension T(SJ) over Sj defined via its "Busby invariant" (cf. (3)) 

(6) Cfö) 9 ƒ - > ( T ( S f ) / « W i -
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Our main analytical result [11] is the following, 

THEOREM 2. The extensions TJ(S) andr{Sj) {cf. (4) and (6)) are stably 
{unitarily) equivalent, hence give rise to the same element in the Kasparov 
group ExtMS^Cfà-i)). 

The main difficulty in the proof lies in the fact that the extensions Tj(S) 
and T{SJ) "live" on different measure spaces S and Sj. First consider the case 
j = 1, giving the usual index. By Theorem 1, there exist constants Àm, m £ 
N, such that the mapping Uf := Am • ƒ | Si is an isometry from i£(m,o,...,o) c 

H2{S) into H2{Si). It follows that U extends to a unitary mapping between 
the closure Hf{S) of ?\{Z) and H2{S\). Let Nm be the highest weight vector 
in ü7(m,o,...,o)- Then the explicit calculations of [9, Theorem 2.1 and Lemmas 
2.6 and 2.7] imply that the quotients Am := {Nm \ Nm)s/{Nm \ Nm)Sl of the 
respective L2-scalar products satisfy Am/Am+i —• 1 as m —• oo. This implies 
that U induces a unitary equivalence (cf. [2, 6]) between T\{S) (compressed 
to H\{S)) and r(Si). For j > 1, one applies these arguments to the boundary 
components De, for e G Sj_i, and shows that the operator fields inducing the 
unitary equivalence are continuous in the parameter e. 

By Theorem 2, we can use the index formula for (families of) Toeplitz 
operators on strongly pseudoconvex (singular) domains [3, Theorem 1 and 
Final Remarks] to express (5) in topological terms: 

THEOREM 3. For j = 1, the 1-index Indi: Kx(Si) -> Z is the index 
character [3] of the oriented contact manifold Si and has the cohomological 
expression 

(7) IndiCa) = ch(a) • Td(£)[Si] = £ (fcZl)!0*'1* ' T d ( W i ] 

for all a G [Si,GXoo] = [Si,£/oo]- Here ch denotes the {odd) Chern character 
[0, 1.10], Td(£) ü the Todd class of the "Peirce %-bundle" E = {Z1/2{e)) 
over Si and h i , . . . , hn are the standard generators of H*{Un) Q). 

Similarly, the higher indices Indj are given by Indj(a) = x{Pa) f°r all 
a G JK'1(S|), where x is the index character of the fibre bundle TTJ : E^ —> Sj~\ 
with fibres Sf, e G Sy-i, and 0: Ey —• Sj maps c G Sf to e -f c. The 
cohomological expression for Indj(a) is similar to (7) involving integration 
along the fibres of ITJ. Geometrically, /3 realizes a boundary component of 
De as a boundary component of D itself. For domains of rank 1 (Hilbert 
balls) and rank 2 ("Lie balls"), Theorem 3 gives the "odd" index theorem for 
Toeplitz operators [12] and Atiyah-Singer's "even" index theorem over spheres 
[1], respectively. Theorem 3 can also be applied to deduce index formulas for 
Wiener-Hopf operators on (irreducible) self-dual homogeneous cones. 
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