
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 16, Number 1, January 1987 

FATOU THEOREMS ON DOMAINS IN C n 

STEVEN G. KRANTZ 

If D Ç C is the unit disc and 0 < p < oo then define HP(D) to be those ƒ 
holomorphic on D such that 

/»2TT 

| | / | | i r , s sup / \f(re»)\*dOV*< oo. 
0<r<lJo 

The space H°° (D) consists of the bounded holomorphic functions equipped 
with the supremum norm. The classical Fatou theorem asserts that if ƒ € 
HP(D) then for a.e. (with respect to linear measure in dD) e%e € dD it holds 
that 

lim f{rei0) = f*{eid) 

exists. For p > 1, the function ƒ can be recovered from ƒ* by means of the 
Cauchy or Poisson integral formulas. See [JG or SK]. 

It is an important and useful fact that this radial approach to et0 G dD 
may be replaced by a more general type of approach: if a > 1 and P G dD 
we define the Stolz region 

Ta(P) = {zeD: \z-P\<a-(l-\z\)}. 

Then, for any 0 < p < oo, ƒ G HP(D), and a > 1 we have 

lim f(z) = f*(P) 

for a.e. P G dD. It is known [IP] that this nontangential method of approach 
is best possible. 

If O Ç C n is a smoothly bounded domain then there is a similar theory 
of Hp spaces (also classical). (Let 6Q(Z) = dist(z,dQ).) In this theory one 
replaces 

(i) the circles {rei0: 0 < 9 < 2TT} by dQe = {z G H: 6Q(Z) = e}, e small; 
(ii) linear measure by (2n — l)-dimensional area measure; 
(iii) Stolz regions Ta by cones in space of fixed aperture. 
It is a remarkable discovery of Korânyi (for the ball and for certain sym­

metric domains [AKI, AK2]) and of Stein (for smoothly bounded domains 
[ESI]) that in C n , n > 1, the conical approach regions are not optimal for 
studying the boundary behavior of Hp functions. Indeed, they may be re­
placed by admissible approach regions which are conical in "complex normal 
directions" and parabolic in "complex tangential directions" (see [ESI, SK]). 
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An even more recent development is that, for many domains fi in C n , 
even the admissible approach regions are not optimal. The correct shape for 
the approach regions at a point P G dQ seems to be connected to the Levi 
geometry of <9fi at P. The paper [CK] contains Lindelof theorems (pointwise 
results) which suggest what the optimal approach regions ought to be, while 
[NSW] performs the much more difficult task of explicitly calculating the 
correct approach regions for a.e. results on the (very special) domains of finite 
type in C2 . 

We announce here a rather general differential geometric method for study­
ing the matters discussed above. This method gives a canonical (and, in 
all calculable instances, optimal) method to assign approach regions to the 
boundary points of a smooth (î Ç C n , thus at least partially answering a 
question posed by Stein in [ES2]. 

For specifics, let fi Ç C n be a smoothly bounded domain. Let p be a metric 
on fi (Riemannian, Finsler, or otherwise) and let dV be an associated volume 
(there is considerable freedom in the choice of dV). We make two hypotheses 
about the compatibility of p and dV with the complex structure on fi: 

(a) There is a C > 0 such that if B(P, r) Ç fi is a metric ball and ƒ <E #p(fi) 
then 

(b) If Z)W G fi are inside a tubular neighborhood of dfi and have the 
same Euclidean normal projection to dQ (nnz = TTQW) and if a > 0 and 
disn(z, fi) > disn(w,fi) (this is Euclidean distance) then 

7rn(B(*,a)) 2 7rn(B(w,a)). 

We discuss the plausibility of these hypotheses at the end of this announce­
ment. 

The thrust of our metric point of view is to define our approach regions, 
boundary measures, and balls in the boundary in terms of p and dV. If 
P G dfi, let up be the unit outward normal to <9fi at P. Let a > 0 be fixed 
once and for all and define the corresponding approach region at P to be 

ma{P) = {z e fi: p{z,-uP)<a}. 

Here, in the expression p(z, — i^p), the symbol —up is interpreted to denote a 
set of points. Now we use the Carathéodory measure construction (see [HF]) 
to define a new measure on dû. For each P € <9fi, r > 0 small, we define 

j8a(P,r) = 7r(B(P-r i /p ,a)) 

where, as usual, B(- , ) denotes a p-metric ball in fi and up is once again a 
vector. Let o;(r), 0 < r < oo, be an increasing function with u>(0) = 0. If 
S > 0 and E C dfi define 

H6{E) = i n j l ^ w i r i W B i P i -nup^a)). 

Here Cs{E) is the collection of countable coverings {/3(Pi,ri)} of E by balls 
in dQ with all u < 8. Now p>s{E) increases as 6 -* 0, so we may define 

p(E) = lim.jis(E). 
o—•0"'" 
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As is standard in the theory of spaces of homogeneous type, we must hypoth­
esize that 0 < p>{U) < oo for any open U Ç <9fi. 

THEOREM. Let ƒ G HP{Q), 0 < p < oo. Then for p-almost every PedQ 
it holds that 

lim f(z) = f*(P). 

One natural choice of p, V, a; is to let p be one of the Bergman, Carathéodory, 
or Kobayashi metrics (see [SK]), to let dV be a suitable associated volume, 
and to let u(r) = rfc, where fc is a suitably chosen exponent. Then the follow­
ing assertions hold: 

(1) The constructions of 9Jta, dp, are invariant under biholomorphic maps 
which extend C1 to the boundary. 

(2) Hypotheses (a) and (b) hold on the disc (with fc = 1), the ball (with 
k = n), strongly pseudoconvex domains (with fc = n), domains of finite 
type in C2 (with fc = 2), convex domains (with fc = n), and near strongly 
psuedoconcave points (with fc = 2n — 1). 

(3) Near strongly pseudoconvex points (which are generic), dp is mutually 
absolutely continuous with respect to the usual boundary area measure. 

It is known [GA] that on the disc, the ball, strongly pseudoconvex domains, 
and domains of finite type in C2 , the approach regions 9Dta constructed with 
the Kobayashi or Bergman metrics are comparable to those defined in [SK, 
AKI , ES1, and NSW] respectively. At a strongly pseudoconcave point, 
9Jla(P) contains a set of the form {z € fi: \z - P\ < so}, $o small. Thus 
approach at such a boundary point is unrestricted (as it should be, by the 
Hartogs extension phenomenon or Kugelsatz). 

Other choices of u; can be used to pick out special curves in <9fi. For 
instance, the choice uj(r) = r yields, near strongly pseudoconvex points and 
points of finite type in C2 , a measure which restricts to linear measure on 
complex normal curves and to zero measure on other curves. Our theory 
extends, by means of this measure, to recover a version of the Nagel-Rudin 
theorem [NR] on boundary behavior of H°° functions along complex normal 
curves. 

We believe that hypotheses (a) and (b), or suitable variants, are true es­
sentially all the time. Using L2 estimates for the d problem, one can verify 
(a variant of) (b) for any bounded, smooth pseudoconvex domain. A slightly 
weakened (but sufficient for our purposes) version of (b) is easily checked for 
the Kobayashi metric on any smoothly bounded domain. Hypothesis (a) is 
more difficult: it holds (for any of the standard invariant metrics p and for 
suitable dV) on the disc, ball, polydisc, strongly pseudoconvex domains, on 
convex domains, near strongly pseudoconcave points, and near points of finite 
type in C2 . However the calculations in the latter instance are quite difficult 
and require the ideas of [NSW]. The crux of our approach is not to eliminate 
calculation (indeed this seems impossible) but instead to unify known results 
and to relegate the calculations to the arena of calculating a metric. 

It should be stressed that we do not know how to derive our results by 
using the methods of, or even the language of, spaces of homogeneous type. 
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The covering lemma which we ultimately prove is inspired by those in [HF, 
K P , EGKP] , relies on dimension and on the metric, and is independent of 
any measure. It hinges on the following fact: There is a constant N > 0 such 
that if Bi = B(zi,a) is a collection of metric balls in Q such that {ir(Bi)} 
covers a compact set E Ç <9Q, then there is a subcollection 53 = {B^} whose 
projections still cover E such that 53 partitions into N families {93j}£i of 
balls and the projections to dQ of the elements of 53/, each Z, are pairwise 
disjoint. This easily gives a Besicovitch-type covering lemma for the balls 
/?(•, •) in the boundary. 

Details of the proof of the theorem will appear elsewhere. We also have 
obtained results about the Nevanlinna class (using ideas in [RB]), atomic 
theory (using ideas in [MW]), and the equivalence of 9Jta-boundedness and 
the existence of 9Jla limits. We intend to develop the theory of the Lusin area 
integral in the metric framework as well. 
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