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SINGULAR LOCI OF SCHUBERT VARIETIES 
FOR CLASSICAL GROUPS 

V. LAKSHMIBAI 

In this note, we give an explicit description of the singular locus of a Schu­
bert variety in the flag variety G/B, where G is a classical group, and B a 
Borel subgroup of G. 

Let G be a classical group, and T a maximal torus in G. Let W be the 
Weyl group, and R the system of roots, of G relative to T. Let B be a 
Borel subgroup of G, where B D T. Let S (resp. i?+) be the set of simple 
(resp. positive) roots of R relative to B. For a G Ü , let 8a be the reflection 
with respect to a, and Xa the element in the Chevalley basis for the Lie 
algebra of G, associated to a. For w € W, let e(w) denote the point in 
G/B corresponding to w. The Schubert variety X(w)y where w G W, is by 
definition the Zariski closure of B e(w) in G/B. {X(w) is understood to be 
endowed with the canonical reduced structure.) Let >: denote the Bruhat 
order in W. It is well known that for w\,W2 £ W, 

w\ > W2 if and only if X(w\) D X(w2). 

(For generalities on algebraic groups, one may refer to [1].) 
The results on the singular locus of a Schubert variety are obtained as 

consequences of "standard monomial theory" as developed in Geometry of 
G/P. I-V (cf. [11, 7, 4, 5, 8]). One of the consequences of standard monomial 
theory is the First Basis Theorem (cf. [5, 8, 6]) which gives a Z basis 

(P(A,/x), (A,/i) an admissible pair} 

for H°(Gz/Pz, Lz), where Pz is a maximal parabolic subgroup scheme of Gz 
and Lz is the ample generator of Pic(Gz/-Pz)- For any field fc, let us denote 
the canonical image of P(A, /x) in H°(Gz ® k/Pz ® fc, Lz <8> k) by p(A, fx). In 
[9], it is shown that over any field fc, for iu,r € W> with w >: r, the Zariski 
tangent space T(W,T), to X(w) at e(r) is spanned by 

for all (A, IA) such that X_0p(A, /i) = cp(r, r), c £ fe*, 1 
p(A,/i)lx(u»)^0 J ' 

Denoting by {(?(A, //)} the basis for the Z-dual of H°(Gz/Pz, £z)> dual to the 
basis {P(A, /x)}, it can be seen easily that X-^p(A, /z) = cp(r, r), c € fc*, if and 
only if X_/3Q(T,T) , when written as a Z-linear combination of the elements 
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X_^,/3€r(f l+) 
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Q{0,6), involves <5(À,/z) with a coefficient that is nonzero in k. From this we 
obtain that T(w, r) is spanned by 

'X-0,I3€T(R+) 
for all (A,/x) such that Q(A,/i) occurs in X. 
with a coefficient that is nonzero in A;, w >; À 

0Q(T,T)\ 

In [3], we have given an explicit description of Q(A, fi) for the case of a classical 
group. Using this description, we express X-pQ(r, r) as a linear combination 
with integer coefficients of the Q(0,6)'s. This enables us to obtain an explicit 
description of the singular locus of X(w). 

Let G be classical of rank n. Let S = { a j , . . . , a n } , the order being as in 
[2]. Further, we follow the notation in [2] to denote the elements of R. For 
1 < d < n, we fix the following: 

p _ ƒ the maximal parabolic subgroup of G 
d ~~ \ obtained by "omitting the simple root a<j", 

Wpd = Weyl group of P^, 

WPd = the set of "minimal representatives" of W/Wpd. 

Recall (cf. [2, 4]) that 

WPd = {w€W\ l(wsai) = l(w) + 1, 1 < i < n, i^ d}. 

It is known (cf. [2]) that 

(1) W = WPdW
Pd. 

For w G W, let tt/d) be the element in WPd corresponding to the coset wWpd. 
We have 

(2) w{d) =wWPdnWPd. 

Let 
A = {(ai,.. . ,Od)| ai < a2 < ••• < ad, az € Z}. 

We have a natural partial order > in A, namely, 

(3) (ai,...,a<i) > (bi,...,bd)) if â  > fe^, 1 < t < d. 

This partial order among d-tuples will be used in the sequel in describing the 
Bruhat order in WPd. Further, for any d-tuple (21 , . . . , Zd) of integers, we let 

(4) (zi,.>.,zd) î = (zix,Zi2,...,Zid) 

where j —> ij is a permutation and z^ < Zij+1. Thus, (21,...,#<*) î is the 
d-tuple whose entries are obtained by arranging the entries (zi,...,Zd) in 
increasing order. We shall denote the elements of the symmetric group Sm , 
where m G N, in the following way. Let a € 5 m be such that 

(5) a(i) = Ci, 1 < i < m. 

We shall denote a by (ci • • • cm). Let k be the base field. For any positive 
integer m, let {e i , . . . , em} denote the standard basis of fcm. 
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I. The symplectic group Sp(2n). Let E = (__°j Q)> where 

--f-' " 
v ' nXn 

Let ( , ) be the skew symmetric bilinear form on fc2n, represented by 25, with 
respect to {e i , . . . , e2n}- Let 

(6) G = Sp(2n) = {A€ SL(2n)| %AEA = £ } . 

Let <T be the involution on SL(2n) defined by 

(7) a(A) = ^ ( U ) - 1 ^ - 1 , A G SL(2n). 

We see that 
(8) Sp(2n) = SL(2n)*. 

In view of (8), we obtain an identification of VT, the Weyl group of G, with a 
subgroup of S2n (= the Weyl group of SL(2n)), namely 

(9) W = {(at • • • a2n)\ at = 2n + 1 - a2 n+i-t , 1 < * < 2n}. 

See [7] for details. 
The above identification (cf. (9)) of W, and straightforward calculations 

using the definitions of [2] allow us to identify WPd as 

(10) WPd = I ( a i , . . . , O d ) 

(1) 1 < ai < a2 < • • • < ad < 2n, 
(2) for 1 < i < 2n, if i G {a i , . . . , a^}, 
then 2n+\ — i$L {a\,..., a^} 

For w G W, say w = (ci • • • C2n), we see easily that 

(H) wW = (cu...,cd)î. 

Under the above identification of WPd, we have (cf. [10]), given two elements 
(01,...,Od), (61,...,bd) in WPd, 

(12) (o i , . . . ,Od)^(6 i , . . . ,6d) if and only if ( a i , . . . ,ad) > (61,. . . ,6d). 

Thus, the Bruhat order in WPd coincides with the natural order (cf. equation 
(3)) on d-tuples. 

PROPOSITION C. 1. LetG = Sp(2n). For \<i< 2n, let i' = 2n 4-1 - % 
and \i\ = min{i,i'}. Let w,r €W, with w > T. Let r = (01 • • 02n)- TTien 
the tangent space T(w, r) to X(w) at e(r) w spanned by the set of root vectors 
{X-p,(J G N(W,T)}, where N(W1T) is the subset ofr(R^) consisting of roots 
(3 which satisfy criteria (a) and (b) below. Let (3 = r( a), a G i î + . We /oZ/ow 
tfte notation of [2] /or elements of R+. 

(a) Let a = £j - €k, 1 < j < k <n or 2SJ, 1 < j <n. Then 

w > spr. 
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(b) Let a = e3; 4- £&, 1 < j < k < n. Let s (resp. r) be the min{|aj|, \ak\} 
(resp. maxdaj^lafcl}). Then 

w{j) ^ ( a i , . . . , ^ - ! , ^ ) ! 

and 
w{k) h {a1,...,âj,...yak-i,r,s') î . 

II. The special orthogonal group So(2n+ 1). Let 

/o r 
E = 

^ y 2n+lx2n+l 

and let ( , ) be the symmetric bilinear form on fc2n+1, respresented by E, 
with respect to {e i , . . . , e2 n+i}. Let 

(13) G = So(2n +1) = {AG SL(2n 4- 1)| 'AtfA = E}. 

Let a be the involution on SL(2n 4-1) defined by 

(14) <r{A) = ECA^E, A G SL(2n + 1). 

As in §1, we have 

(15) So(2n + l) = SL(2n + l ) a . 

In view of (15), we obtain identifications for the Weyl group W, and also for 
WPd similar to (9) and (10), namely 

(16) ^ = { ( a i . . . a 2 n + i ) G 5 2 n + i | a i = 2n + 2 - a 2 n + 2 - ^ l < i < 2 n + l } 

and 

(17) WPd = { ( a i , . . . , a < j ) 

(1) 1 < ai < a2 < • • • < ad < In + 1, 
(2) ai ^ n 4- 1,1 < i < d, 
(3) For 1 < i < 2n + 1, if i G {oi , . . . , ad} 
then 2n + 2 — i £ {a i , . . . , a^} 

For w G W1 say w = (c\ • • • c2n+i), we have 

(18) ^ ) = ( c 1 , . . . , c d ) î . 

As in §1, we have (cf. [10]) that the Bruhat order in WPd coincides with the 
natural order (cf. equation (3)) on d-tuples. 

PROPOSITION B . l . (Assume charfc / 2.) Let G = So(2n 4- 1). For 
1 < i < 2n 4-1, let i' = 2n 4- 2 - i and |i| = min{i,i'}. Let w,r G W, with 
w >T, and let r = (ai • • • a2 n+i). Then the tangent space T(w, r) to X(w) at 
e(r) is spanned by the set of root vectors {X~.p, (3 G N(w,r)}, where N(W,T) 

is the subset ofr(R+) consisting of roots ft which satisfy criteria (a), (b), and 
(c) below. Let /3 = r(a), a G i2+ . 

(a) Let a = 6j — 6k, 1 < j < k < n. Then 

w > spT. 
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(b) Let a = €j + 6k, 1 < j < k <n. Let s ( resp. r) be the minimum (reap. 
maximum) of {|oj|,|o/t|}. 

(i) Suppose precisely one of {a3)ak} does not exceed n. Then 

w{3) > (oi, . . . ,o i_i,a /
f c) Î, 

w{k) h (a i , . . . ,%•, . . . ,a k „ u r ,s ' ) î, 

and 
WM h (S/3T) (n). 

(ii) Suppose aj,ak either both exceed n or both do not exceed n. For 
k < d < n — 1, let s^d) be the largest integer, r < sc(d) < n, such that 
sc(d) & {lai|, • • •, lad|} {^f no such integer exists, we let sc^) = r). Then 

w{j) >(au...,aj-ua,
k)

Jt, 

w{d) > ( a 1 , . . . , ây , . . . , a f c , . . . , a d , ^ ( d ) , 5
/ ) î, k < d < n - 1, 

and 
w^h{s^n\ 

(c) Let a — €j, 1 < j < n. For j < d < n — 1, let sm(d) be the largest 
integer, \ÜJ\ < sm(d) < n, such that sm(d) £ {|oi|,... , \ad\} (if no such sm(d) 
exists, we let sm(d) = laj|)« Then 

w{d) h (a1,...,âj,...,ad,s
,
m(d)) î , j < d < n - 1, 

and 
w ( n ) >: (« /9T)< W >. 

III. The special orthogonal group So(2n). Let 

'o r 

7 2nX2n 

and let ( , ) be the symmetric bilinear form on fc2n, represented by 25, with 
respect to {e i , . . . , e2n}« Let 

(19) G = So(2n) = {Ae SL(2n)| 'AJ5M = E}. 

Let tr be the involution on SL(2n) denned by 

(20) a{A) = ECA^E, A e SL(2n). 

We have 

(21) So(2n) = SL(2n)". 

As in §§I and II, we obtain, in view of (21), identifications (described below) 
for W and WPd. We have 

(22) W=i(ai...a2n)esJ^ = 2 n + l - a 2 n + ^ l < i < 2 n , j 
1 (2) #{z, 1 < % < n\ ai > n) is even j 
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For 1 < d < n, let 

(23) Zd ( a i , . . . , a d ) 
(1) 1 < ai < a2 < • • • < ad < 2n, 
(2) for 1 < i < 2n, if i € {a i , . . . , a<j}, then 

2n + 1 -i & {a i , . . . , a d } 

We have for d ^ n — 1 

(24) WPd = Z d . 

For d = n - 1, if w G W P d , then 

(25) w = wui (modWpn_1) , 0 < i < n, i ^ n — 1, 

where 

!

5Q n if i = n, 

Id if t = 0, 
SaiSai+1 ' * * San_2San 'lt 1 < i < Tl - 2. 

(Here Id denotes the identity element in W.) In particular, for W\,W2 € 
W, say wi = (ai • • • a2n)> ^2 = (&i • • • &2n), we can have w^ ' = W2 
without ( a i , . . . , an_i) Î and (61 , . . . , 6n_i) î being the same. Thus WPn~x 

gets identified with a proper subset of Zn_i (cf. Definition (23)). For w G W, 
say w = (ci - - • C2n)> we have 
(27) ^ d ) = (c i , . . . , C c i ) î , d ^ n - 1 . 

To describe tt;^n_1\ we let, for 1 < i < n, i ^ n — 1, 

/0fix / (i) (i) \ _ ƒ the (n — l)-tuple given by the first (n — 1) 
(-«J) IVi , . . . , » n - J - | e n t r i e s i n w u . 

and 

(29) Y = { ( „ « , . . . , y « x) Î, 0 < i < n, i ? n - 1}. 

We observe that Y is totally ordered under > (cf. (3)). We have 

(30) K/ n - 1 ) = the smallest (under >) element in Y. 

Unlike the cases of Sp(2n) (resp. So(2n + 1)), the Bruhat order in W, the 
Weyl group of So(2n), is not induced from the Bruhat order in S2n- Hence 
the Bruhat order in WPd does not coincide with the natural order on d-tuples 
(cf. (3)). We now describe the Bruhat order in WPd. 

For 1 < i < 2n, let 

i' = 2n + 1 — i and \i\ = min{z, i'}. 

Under the above identification, given two elements ( a i , . . . , a d ) , (&i,..., 6<j) in 
WPd, 1 < d < n, we have (cf. [10]) 

(a i , . . . ,ad) > (6i,...,6d) 

if and only if the following two conditions hold: 
(A) ( a i , . . . , a d ) > (6i , . . . ,6d) . 
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(B) Suppose for some r, 1 < r < d, and some i, 0 < i < d — r, 

(|oi+i|, . . . , |o i+r |) T= (|6;+i|, • • • i |6»+r|) î = {n + 1 - r,.. . , n}. 

Then 
#0' , t + 1 < i < i + r| a,- > n} 

and 
# 0 ' , t + 1 < j < i + r\ bj > n} 

should both be odd or both even. 

PROPOSITION D . l . (Assume charfc ^ 2,3.) Let G = So(2n). Let W,T € 
W, with w > T, and let r = (a\ • • • ci2n)- Tfcen ^ e tangent space T(w,r) to 
X(w) at e(r) is spanned by the set of root vectors {X_^,/3 G N(W,T)}, where 
N(W1T) is the subset ofr(R+) consisting of roots (3 which satisfy criteria (a) 
and (b) below. Let /? = r(a), a G -R+. 

(a) Le£ a = £./ - £&, 1 < y < k < n. Then 

w h spr. 

(b) Let a = 6j + 6k, 1 < j < k < n. Let s (resp. r) be the minimum (resp. 
maximum) of {\a3;\, \ak\}. 

(i) Suppose precisely one of {aj,ak} does not exceed n. Then 

w{3) > ( a i , . . . , a ^ i X ) Î» 

w(fc) >: (a i , . . . , Oj , . . . , afc_i, r, s') Î, 

^ ( n _ 1 ) > (^r )^- 1 ) , 

and 
w(n) >: ( W ° -

(ii) Suppose a^a/c either both exceed n or both do not ex­
ceed n. For k < d< ra-2, lets^d),... , s _ i , s 0 , s i , . . . ,sc(d) 
6e £Ae integers 

s < 3_/(d) < a-j(d)+i < • • • < 5_i < 50 = r < 5i < • • • < 5c(d) < n 

3ê £ {|ai|, . . . , |od|}, - /(d) < t < c(d), i Ï 0. 

TAen 

w 0 ) >: (ai,.. . ,a i_i,a' f e) | , 

"(/(d),c(d))^(0,0), 
I * J , . . . , I*AC, . . . , i * d , / j ^ ; i v (1(d),c(d)) = (0,0), 

and /or d = n — 1 or n, 

w(d) ^ i(<*u->->àj,...,âk,...,adl8'cW__v8') Î *ƒ( 
~ \(ai, . . . ,a, , , . . . ,âfc,. . . ,a<i,r',s') î zf| 

W{d) > (80T)W. 
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IV. Concluding remarks. 

COROLLARY. Let G be of type B n , C n , or D n and let w G W'. Then 
X(w) is smooth if and only if #N(w,Id) = l(w), where N(w,ld) is given by 
Proposition C.l, B.l, orD. l according as G is of type Cn , Bn, or Dn, with 
T = Id, the identity element ofW. 

REMARK 1. For G of type An, similar results as above are described in 

REMARK 2. Even if char k = 2 or 3 (in the case of special orthogonal 
groups), using the explicit computations of X_/5Q(r,r), one can still describe 
T(W,T) in a way similar to Propositions B.l and D.l. 

REFERENCES 

1. A. Borel, Linear algebraic groups, W. A. Benjamin, New York, 1969. 
2. N. Bourbaki Groupes et algèbres de Lie, Chapitres 4, 5, et 6, Hermann, Paris, 1968. 
3. V. Lakshmibai, Bases pour les representations fondamentales des groupes clas­

sique. I, II, C. R. Acad. Sci. Paris Sér. I Math. 302, 1986. 
4. V. Lakshmibai, C. Musili, and C. S. Seshadri, Geometry of G/P. Ill, Proc. Indian 

Acad. Sci. Math. Sci. 88A (1978), 93-177. 
5 , Geometry of G/P. IV, Proc. Indian Acad. Sci. Math. Sci. 88A (1979), 279-362. 
6 , Geometry ofG/P, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 432-435. 
7. V. Lakshmibai and C. S. Seshadri, Geometry of G/P. II, Proc. Indian Acad. Sci. 

Math. Sci. 87A (1978), 1-54. 
8 , Geometry ofG /P. V, J. Algebra 100 (1986), 462-557. 
9. , Singular locus of a Schubert variety, Bull. Amer. Math. Soc. 2 (1984), 363-

366. 
10. R. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 

(1982), 104-126. 
11. C. S. Seshadri, Geometry of G/P. I, C. P. Ramanujan: A Tribute, Tata Inst. Fund. 

Res. Studies in Math., Springer-Verlag, Berlin, 1978, pp. 207-239. 

D E P A R T M E N T O F M A T H E M A T I C S , T E X A S A&M U N I V E R S I T Y , C O L L E G E S T A T I O N , 

T E X A S 77843 


