NONCLASSICAL EIGENVALUE ASYMPTOTICS FOR OPERATORS OF SCHRÖDINGER TYPE

DAVID GURARIE

We consider operators in the form $A = -\nabla \cdot \rho \nabla + V(x)$ on \mathbb{R}^n , where metric $\rho = (\rho_{ij}(x)) \ge 0$ and potential $V(x) \ge 0$. The classical Weyl principle for asymptotic distribution of large eigenvalues of A states that the counting function

$$N(\lambda) = \#\{\lambda_j \leq \lambda\} \sim \operatorname{Vol}\{(x;\xi) | \ \rho\xi \cdot \xi + V(x) \leq \lambda\} \text{ as } \lambda \to \infty.$$

(See for instance [Gu].) Integrating out variable ξ we can rewrite it as

(1)
$$N(\lambda) \sim \frac{\omega_n}{(2\pi)^n} \int (\lambda - V)_+^{n/2} \frac{dx}{\sqrt{\det
ho}}$$

If potential V and metric ρ are assumed to be homogeneous in x, $V(x) = |x|^{\alpha}V(x')$; $\rho_{ij}(x) = |x|^{\beta}\rho_{ij}(x')$, x' = x/|x|, then (1) reduces to

(2)
$$N(\lambda) \sim C\lambda^{[n/2 + (1-\beta/2)n/\alpha]} \int V^{-(n/\alpha)(1-\beta/2)} \frac{dS}{\sqrt{\det \rho}}$$

integration over the unit sphere S with constant

$$C = \frac{\omega_n}{(2\pi)^n \alpha} B\left(\frac{n}{2} + 1; \frac{n}{\alpha}(1 - \beta/2)\right),$$

which depends on the volume ω_n of the unit sphere in \mathbb{R}^n and the beta function.

Assuming $\beta < 2$ we see that integral (2) becomes divergent if V(x') vanishes to a sufficiently high order. The simplest such potential is $V(x,y) = |x|^{\alpha} |y|^{\beta}$ on $\mathbf{R}^n + \mathbf{R}^m$.

The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator $-\Delta + V(x)$, fails to predict discrete spectrum below any energy level $\lambda > 0$. However, as was shown by D. Robert [**Ro**] and B. Simon [**Si**], A has purely discrete spectrum $\{\lambda_j\} \to +\infty$ (for qualitative explanation of this phenomenon see [**Fe**]). Moreover, the "nonclassical" asymptotics of $N(\lambda)$ was derived for such A.

Recently M. Solomyak [So] studied a general class of Schrödinger operators $-\Delta + V(x)$ with homogeneous potentials V subject to the following constraint:

(A) zeros of V, $\{x: V(x) = 0\}$ form a smooth cone Σ in \mathbb{R}^n of dimension m, and V vanishes on Σ "uniformly" to order b > 0.

Introducing variables $x \in \Sigma$ and $y \in N_x$ (the normal to Σ at $\{x\}$), hypothesis (A) means that there exists

$$\lim_{t\to 0} t^{-b}V(x+ty) = V_0(x,y).$$

©1986 American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page

Received by the editors November 18, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 35P20; Secondary 35J10.

It is easy to see that $V_0(x, y)$ has mixed homogeneity

(3)
$$V_0(x,y) = |x|^a |y|^b V_0(x',y'); \quad a+b = \alpha$$

and V_0 approximates V in a small conical neighborhood Σ_{ε} of Σ :

$$\Sigma_arepsilon = \{x+y|\,\,x\in\Sigma; |y|$$

Under hypothesis (A) M. Solomyak [So] derived asymptotics of $N(\lambda)$ for such operators $A = -\Delta + V(x)$ in terms of eigenvalues $\{\lambda_j(x)\}_{1}^{\infty}$ of an auxiliary family of Schrödinger operators $\{L(x) = -\Delta_y + V_0(x, y)\}_{x \in \Sigma}$. Namely,

(4)
$$N(\lambda) \sim C\lambda^{\frac{m}{2}(1+\frac{2+b}{a})} \int_{\Sigma'} \sum_{1}^{\infty} \lambda_j(x')^{-m(2+b)/2a} \, dS,$$

the integral is over $\Sigma' = \Sigma \cap S$ (unit sphere).

Notice that each operator L(x) has "classical type," so Weyl's principle (2) applies to $\{\lambda_j(x)\}_{1}^{\infty}$,

(5)
$$\#\{\lambda_j(x) \le \lambda\} \sim c(x)\lambda^{(n-m)(1/2+1/b)}$$

Let us also observe that a polynomial asymptotics of $N(x) \sim c\lambda^p$ implies convergence of the series

$$\sum_{1}^{\infty}\lambda_{j}^{-q}<\infty, ext{ with any } q>p.$$

Hence by (5) the sum in (4) converges provided

(6)
$$q = m(2+b)/2a > p = (n-m)(1/2+1/b).$$

Condition (6) is sufficient for validity of (4). In the critical case q = p an additional log λ factor appears in (4).

The method of [So] was based on the variational formulation of the problem and certain eigenvalue estimates for Schrödinger operators in conical regions obtained in [Ros].

In the present paper we shall outline a different approach based on pseudodifferential calculus with operator-valued symbols in the spirit of [**Ro**]. This method allows us to recover Solomyak's result (4) and to extend it in various directions, including operators of the form $-\nabla \cdot \rho \nabla + V(x)$.

We propose the following principle, which governs nonclassical asymptotics: the main contribution to $N(\lambda)$ comes from the degeneracy set Σ (critical set) of V.

According to this principle we want to "localize" A to a small (conical) neighborhood of Σ . Precisely, let us introduce the "model" operator

(7)
$$A_0 = -\Delta_{\Sigma} + L(x) = -\Delta_{\Sigma} + \left[-\Delta_N - 2\nabla_x \cdot \rho' \nabla_y + V_0(x, y)\right]$$

on the manifold $\mathcal{N}(\Sigma) = \bigcup_{x \in \Sigma} N_x$, normal bundle to Σ , where Δ_{Σ} , Δ_N are the Laplace-Beltrami operators on Σ and the normal space, $N = N_x$, with respect to the metrics induced by ρ_{ij} , and ρ' is the "off diagonal" part of ρ .

Writing $A = -\nabla \cdot \rho \nabla + V$ in normal coordinates (x, y) one can show that $A = A_0 +$ "small perturbation" in a conical neighborhood Σ_{ε} of Σ . So we expect $N(\lambda; A) \sim N(\lambda; A_0)$, as $\lambda \to \infty$.

To study the eigenvalue distribution one usually works with certain integral "transforms" of $N(\lambda)$, like tr $e^{-tA} = \int^{+\infty} e^{-\lambda t} dN(\lambda)$ or tr $(\zeta + A)^{-l} = \int^{+\infty} (\zeta + \lambda)^{-l} dN(\lambda)$.

We prefer to work with the latter. Once the asymptotics

(8)
$$\operatorname{tr}(\varsigma + A)^{-l} \sim c_0 \varsigma^{-l+p} \quad \text{as } \varsigma \to \infty$$

is established for tr R_S^l one can go back to the asymptotics of $N(\lambda) \sim c\lambda^p$, as $\lambda \to \infty$, by the Tauberian Theorem of M. V. Keldysh (see [**Ro**]). The relation between the two constants is $c = c_0/pB(p; l-p)$.

So we need to establish (8).

Operator A can be thought of as a differential operator on Σ with operatorvalued symbol $\sum g^{ij}\xi_i\xi_j + L(x)$, where metric $g = \rho_{\Sigma} - \rho'^*\rho_N^{-1}\rho'$ on Σ is constructed from the tangent ρ_{Σ} and normal ρ_N components of ρ . Then the parametrix (approximate inverse) of $(\zeta + A_0)^{-l}$ can be constructed as an operator-valued Ψ DO $K = K_{\zeta}^{(l)}$ with symbol

$$\sigma_K = \left[\zeta + \sum g^{ij}\xi_i\xi_j + L(x)\right]^{-l}.$$

According to our principle we want to localize kernels $R_{\varsigma}^{l} = (\varsigma + A)^{-l}$; $\tilde{R}^{l} = (\varsigma + A_{0})^{-l}$ and $K_{\varsigma}^{(l)}$ to a small conical neighborhood Σ_{ε} of Σ . Let us introduce a cut-off function

$$\chi_{arepsilon} = egin{cases} 1 & ext{on } \Sigma_{arepsilon}, \ 0 & ext{outside}, \end{cases}$$

and define an orthogonal projection $P_{\varepsilon}u = \chi_{\varepsilon}u$ from $L^2(\mathbb{R}^n)$ onto $L^2(\Sigma_{\varepsilon})$.

The following lemma plays the central role in the localization procedure.

LEMMA. All traces below are equivalent as $\varsigma \to \infty$. (i) $\operatorname{tr}(\varsigma + A)^{-l} \sim \operatorname{tr} P(\varsigma + A)^{-l}P$, (ii) $\operatorname{tr}(\varsigma + A_0)^{-l} \sim \operatorname{tr} P(\varsigma + A_0)^{-l}P$, (iii) $\operatorname{tr} K_{\varsigma}^{(l)} \sim \operatorname{tr} PK_{\varsigma}^{(l)}P$, (iv) traces of "truncated" operators : $P(\varsigma + A)^{-l}P$, $P(\varsigma + A_0)^{-l}P$, and $PK_{\varsigma}^{(l)}P$ are all equivalent.

From the lemma follows

(9)
$$\operatorname{tr}(\varsigma + A)^{-l} \sim \operatorname{tr} K^{(l)} \quad \text{as } \varsigma \to \infty.$$

Now it remains to compute the trace of an operator-valued ψ DO $K_{\zeta}^{(l)}$

(10)
$$\operatorname{tr} K_{\varsigma}^{(l)} = \iint \sum_{k=1}^{\infty} \left[\varsigma + \sum g^{ij} \xi_i \xi_j + \lambda_k(x) \right]^{-l} d\xi dx.$$

Integrating out variables ξ , using homogeneity of $\lambda_j(x)$ and $\rho(x)$, and introducing "polar coordinates" on Σ to reduce integration over the cone Σ to a subset $\Sigma' = \Sigma \cap S$, we get

(11)
$$\operatorname{tr} K_{\varsigma}^{(l)} = C_0 \varsigma^{-l+m(1/2+\theta)} \int_{\Sigma} \sum_{1}^{\infty} \lambda_j(x')^{-m\theta} \frac{dx'}{\sqrt{\det g^{ij}(x')}}$$

with constants

(12)
$$s = \frac{\beta b + 2a}{2+b}; \quad \theta = \frac{1}{s}(1-\beta/2); \quad C_0 = \int_0^\infty r^{m(1-\beta/2)}(1-r^s)^{m/2-l} dr.$$

Remembering that $\{\lambda_j(x')\}\$ obey the classical asymptotics (5) with exponent p = (n-m)(2+b)/2b, we obtain a sufficient condition of convergence of series (11)

(13)
$$m\theta = \frac{m}{s}(1-\beta/2) > p = \frac{(n-m)(2+b)}{2b}$$
 or $\frac{m(2-\beta)}{b+2a} > \frac{n-m}{b}$.

Thus we have established the following

THEOREM. If operator $A = -\nabla \cdot \rho \nabla + V$ with homogeneous potential $V(x) = |x|^{\alpha}V(x') \ge 0$ and nondegenerate metric $\rho_{ij}(x) = |x|^{\beta}\rho_{ij}(x') > 0$ satisfies hypothesis (A), then spectral function $N(\lambda)$ of A admits the nonclassical asymptotics

(14)
$$N(\lambda) \sim C\lambda^{m(1/2+\theta)} \int_{\Sigma'} \sum_{1}^{\infty} \lambda_j(x')^{-m\theta} \frac{dx'}{\sqrt{\det g^{ij}(x')}}$$

provided sufficient condition (13) holds. The metric (g^{ij}) on Σ is obtained from components of metric ρ .

REMARKS. (i) Formula (14) includes both the classical formula (2) with $\beta = 0$ and s = a (i.e., b = 0) and all previously studied nonclassical asymptotics [**Ro**, **Si**, **So**] (the latter corresponds to $\beta = 0$).

(ii) In the critical case (equality $m\theta = p$ in (13)) an additional log λ factor appears in (16). The argument requires some modification: Before passing to the limit in the sum $\sum_{1}^{\infty} \lambda_{j}^{-m\theta}$ and integration over Σ one has to "localize" $K_{c}^{(l)}$ to a compact region in Σ .

We shall illustrate our theorem and conditions by the following

EXAMPLE. Take scalar metric $(\rho_{ij}) = \rho = (t^2 + |x|^2)^{\beta/2} I_{n \times n}$ and potential $V = (t^2 - |x|^2)^{\beta/2}$ in the space $\mathbf{R}^n = \{(t, x): t \in \mathbf{R}; x \in \mathbf{R}^{n-1}\}$. The degeneracy set of V is the standard cone $\Sigma = \{(t, x): t = \pm |x|\}$ in \mathbf{R}^n .

Direct calculation shows: $a = b = \alpha/2$ and $V_0(x, y) = |x|^{\alpha/2} |y|^{\alpha/2}$.

Condition (15) for convergence of the series of eigenvalues $\sum_{j} \lambda_{j}^{-(n-1)\theta}$ of the operator $L(x) = -d^{2}/dy^{2} + |y|^{\alpha/2}$ on **R** becomes

$$rac{eta+2}{2-eta} < n-1 \quad ext{or} \quad eta < rac{2(n-2)}{n},$$

and the eigenvalue asymptotics takes a form

$$N(\lambda)\sim C\lambda^{(n-1)(1/2+ heta)}\sum_1^\infty\lambda_j^{-(n-1) heta}\quad ext{with}\; heta=rac{(4+lpha)(2-eta)}{2lpha(eta+2)}.$$

REFERENCES

[Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. N.S. 9 (1983), 129-206.

 $[\mathbf{Gu}]$ D. Gurarie, L^p and spectral theory for a class of global elliptic operators, preprint.

[Ro] D. Robert, Comportement asymptotique des valeurs propres d'opérateurs du type Schrödinger à potentiel "dégénéré", J. Math. Pures Appl. 61 (1982), 275-300.

[Ros] G. V. Rosenblum, Distribution of eigenvalues of singular differential operators, Izv. Vyssh. Uchebn. Zaved. 1 (1976), 75–86. (Russian)

[Si] B. Simon, Nonclassical eigenvalue asymptotics, J. Funct. Anal. 53 (1983), 84–98.
 [So] M. Z. Solomyak, Spectral asymptotics of Schrödinger operators with non-regular homogeneous potential, Mat. Sb. 127 (1985), 21–39. (Russian)

DEPARTMENT OF MATHEMATICS AND STATISTICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO 44106