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A GENERALIZATION OF THE TARSKI-SEIDENBERG THEOREM, 
AND SOME NONDEFINABILITY RESULTS 

LOU VAN DEN DRIES 

This article points out some remarkable facts implicit in the results of 
Lojasiewicz [LI] and Gabrielov [Ga]. 

An important consequence of Tarski's work [T] on the elementary theory of 
the reals is a characterization of the sets which are elementarily definable from 
addition and multiplication on R. Allowing arbitrary reals as constants, this 
characterization consists of the identification of the definable sets with the 
semialgebraic sets. (A semialgebraic subset of Rm is by definition a finite union 
of sets of the form {x e Rw: p(x) = 0, qx(x) > 0, . . . ,qk(x) > 0} where 
p,q1,...,qk are real polynomials.) The fact that the system of semialgebraic 
sets is closed under definability is also known as the Tarski-Seidenberg 
theorem, and this property, together with the topological finiteness phenomena 
that go with it—triangulability of semialgebraic sets [L2, Gi], generic triviality 
of semialgebraic maps [Ha]—make the theory of semialgebraic sets a useful 
analytic-topological tool. 

Below we extend the system of semialgebraic sets in such a way that the 
Tarski-Seidenberg property, i.e., closure under definability, and the topological 
finiteness phenomena are preserved. The polynomial growth property of semialge­
braic functions is also preserved. This extended system contains the arctangent 
function on R, the sine function on any bounded interval, the exponential function 
ex on any bounded interval, but not the exponential function on all of R. (And it 
couldn't possibly contain the sine function on all of R without sacrificing the 
finiteness phenomena, and a lot more.) 

As a corollary we obtain that neither the exponential function on R, nor the set 
of integers, is definable from addition, multiplication, and the restrictions of the 
sine and exponential functions to bounded intervals. 

Questions of this type have puzzled logicians for a long time. (There still 
remain, of course, countless unsolved problems of this sort.) In a more positive 
spirit Tarski [T, p. 45] asked to extend his results so as to include, besides the 
algebraic operations on R, certain transcendental elementary functions like ex; 
the theorem below is a partial answer. (More recently, Hovanskii [Ho, p. 562] 
and the author [VdDl, VdD2] asked similar questions, and in [VdD3] we 
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present a program that, however, goes in a direction quite different from that 
of the present article.) 

A precise formulation of our result requires the following notions. 
(i) A set X c Rw is called semianalytic at the point x e Rm if x has an open 

neighborhood U such that U n X is a finite union of sets of the form 

{y e U: f(y) = 0, gl(y) > 0,...,gk(y) > 0} 

where ƒ, gi , . • •, g& are (real) analytic functions on U. 
(ii) A set X c Rw is called semianalytic (in Rw) if X is semianalytic at each 

point x in Rm. 
(iii) A set X c Rm is called subanalytic at the point x e Rw if there is an 

open neighborhood U of x and a bounded semianalytic set 5 c Rffl+", for 
some w, such that U n X = ^(S), where TT: Rm+W -> Rw is the obvious 
projection map. 

(iv) A set X <z Rw is called subanalytic (in Rm) if X is subanalytic at each 
point x in Rw. 

(In (ii) and (iv) it is not enough to consider only points x in X, but it 
suffices to consider points in the closure of X) 

It is clear that the semianalytic sets in Rm form a boolean algebra contained 
in the class of subanalytic sets in Rm, and it is also easy to see that the latter 
class is closed under taking finite unions and finite intersections. Other facts 
relevant to us are: 

(1) The subanalytic subsets of R and R2 are exactly the semianalytic subsets 
of R and R2. (For m > 2 there are subanalytic sets in Rm which are not 
semianalytic.) 

(2) A bounded semianalytic set has only finitely many connected compo­
nents, and each component is also semianalytic. 

(3) The bounded subanalytic sets in Rm are exactly the sets of the form 7T(S) 
where S is a bounded semianalytic set in Rw+W, and m\ Rm+" -> Rm is the 
obvious projection map. Hence, by (2), a bounded subanalytic set has only 
finitely many connected components, and each component is also subanalytic. 
Also, if I c R m + 1 is bounded and subanalytic, then its projection in Rm is 
subanalytic. 

(4) The complement in Rm of a subanalytic set in Rm is subanalytic. 
The theory of semianalytic sets, and (1) and (2), are due to Lojasiewicz [LI]; 

(3) is an exercise, and the difficult theorem (4) is due to Gabrielov [Ga]. 
The systems of semianalytic sets and of subanalytic sets share many good 

properties with the system of semialgebraic sets, but are not closed under 
definability. Surprisingly, we can give a small twist to the situation and recover 
closure under definability. Namely, call a set X c Rw finitely subanalytic if its 
image under the (semialgebraic) map from Rw to Rm: 

(*i> •••>**,)*-• ( ^ W 1 + *i >• • • > xm/]l1 + xl ) 

is subanalytic in Rm. (Note that this map is an analytic isomorphism onto the 
bounded open set ( - l , l ) m , so that the finitely subanalytic sets are subana­
lytic.) 

Our basic result—almost obvious, once observed—is the following. 
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THEOREM. Let FSm be the class of finitely subanalytic sets in Rm. Then 
(FSm)m€=N is an O-minimal Tarski system on R. 

A Tarski system (on R) is a sequence (<^) m e N such that for each m e N: 
(Tl) Sfm is a boolean algebra of subsets of Rw, 
(T2) X <E &>m ==> R x X and X X R are in ^ m + 1 , 

( T ^ U ^ , . . . , ^ : * ^ ^ } ^ , 
(T4) X e &>m+l => 7r(Ar) e 5^ , where IT: Rm+l -> R"1 is the projection on 

the first m coordinates. 
A Tarski system ( ^ ) on R is called a O-minimal if for each r G R the 

singleton {r} belongs to S?l9 the set {(JC, y) e R 2 : X < y] belongs to ^ a n d 
the only sets in Sfx are the subsets of R with only finitely many connected 
components—in other words, the finite unions of intervals and points. 

The theorem is immediate from the definitions and properties (3) and (4) of 
subanalytic sets. 

The theorem should be considered in combination with general facts about 
O-minimal Tarski systems which we explain now. First, a Tarski system (^m) 
is closed under definability. Modulo familiar arguments this amounts to show­
ing that if X e &>m and / ( l ) , . . . , i(m) are any positive integers < n, then the 
set 

Y= {(yi,...,yn)eW:(yiW,...,yiim))<=x} 

belongs to Sfn. Let us do this for the special case X e ^2 and Y = X~l = 
{(ƒ!> yiY (yi> y\) e * } • Just n°*e that (yl9 y2) e Y ~ 3y33y4((y3, y4) e X 
A y?> = yi A y A = yù- The part to the right of 3y4 defines a set in £f4\ for 
instance, the relation (y3, y4) ^ X defines the set R2 X X, which is in S?4 by 
(T2). The quantifier 3y4 amounts to projecting from R4 to R3, and 3y3 

projects the resulting set into R2. Hence Y G ^ by two applications of (T4). 
(The Kuratowski-Tarski translation of logical formulas into intersection, com­
plement, projection operations, etc., is of course familiar to logicians, but this 
routine sort of "linguistic" argument seems little known to mathematicians in 
general. Perhaps this explains why one sometimes finds explicit proofs that the 
closure of a semialgebraic set is semialgebraic (and similar things) instead of a 
brief remark that this is immediate from the e-8 formulation of closedness.) 

Some nontrivial facts about arbitrary O-minimal Tarski systems were ob­
tained in [VdD2, P-S, K-P-S, VdD4], but, except for the already familiar 
systems of piecewise linear sets, and of semialgebraic sets, no other interesting 
O-minimal Tarski systems were known at the time: it seems that the system of 
finitely subanalytic sets is the first known O-minimal Tarski system on R that 
properly extends the system of semialgebraic sets. (It is not known whether 
there is any Tarski system strictly between the system of piecewise linear sets 
and the system of semialgebraic sets.) 

Here are some "O-minimal" finiteness results. 
Let S?= (&*„) be an O-minimal Tarski system on R. We say that a map ƒ: 

I ^ 7 , l c r , y c R", belongs to 5f if its graph is in Sfm+n. 
PIECEWISE MONOTONICITY; cf. [VdD2, §2]. If (0, b) is an interval and ƒ: 

(a, b) -» R belongs to 5f then there are a0 < ax < • • • < am, a0 = a, am = b, 
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such that on each subinterval (ai9 ai+1) the function is either continuous and 
strictly monotone, or constant. 

UNIFORM BOUNDS; cf. [K-P-S]. Each set Y ^^m has only finitely many 
connected components, and each component also belongs to Sfm. If further ƒ: 
Y -* Rn belongs to ^ + w , then there is a positive integer N = N(f) such that 
for each x e Rw, the fiber f~l(x) has at most Ncomponents. 

TRIANGULABILITY; cf. [VdD4], generalizing the proof in [Hi]. Let Sf contain 
(the graphs of) addition and multiplication, and let Xv..., Xk ^ <9*m. Then 
there is a finite simplicial complex K in Rw and a homeomorphism h in Sf 
between Xx U • • • U Xk and a subset of |AT| such that each h(Xi) is a union of 
(open) simplices of K. 

GENERIC TRIVIALITY; cf. [Ha] for the semialgebraic case. Let 3? contain 
addition and multiplication, and let ƒ : X -> Y be a map in S?, Y =£ 0 . Then 
Y has a subset Z in 5? of lower dimension such that over each of the finitely 
many connected components C of Y \ Z the map ƒ is ^trivial, that is, taking 
c e C there is a homeomorphism f~l(C) = C X f~l(c) in ^ , that commutes 
with the obvious maps onto C. 

From a model-theoretic viewpoint generic triviality follows easily from 
triangulability; cf. [VdD4]. 

A few remarks on what is finitely subanalytic and what is not. Clearly, all 
bounded subanalytic sets (and hence their complements) are finitely subana­
lytic, and in fact, the system of finitely subanalytic sets is the Tarski system 
generated by addition, multiplication, and the bounded semianalytic sets. 
More precisely, the theory of the ordered field R with predicates for all 
bounded semianalytic sets is model complete, and the sets definable in this 
structure are exactly the finitely subanalytic sets. Every restriction of an 
analytic function ƒ: U -> R, U open in Rw, to a compact subanalytic set 
X c U, is finitely subanalytic. (That is, the graph of ƒ \X is finitely subanalytic.) 
The arctangent on R is finitely subanalytic by its definition as the inverse of 
the tangent on ( — 77-/2,7r/2), and on this interval the tangent is definable from 
sine and cosine. 

POLYNOMIAL GROWTH. Given a finitely subanalytic function ƒ: (0, oo) -> R, 
there is d e N and a > 0 such that \f{t)\ < td for t > a. 

To see this, use the transformation t = 1/x in the domain, and the same 
transformation or a translation in the codomain to obtain a function g: 
(0, e) -> R with subanalytic graph and g(x) -> 0 as x -> 0. By (1), the graph of 
g is even semianalytic at (0,0), hence there is a nonzero real power series 
F(X, Y) = Y*amnX

mYn converging in a neighborhood of (0,0) such that 
F(x, g(x)) = 0 for all small positive JC. Assuming g is not identically zero near 
0 we may divide F by a suitable power of X and obtain a new F that is not 
divisible by X. Hence, by Weierstrass preparation, we may even assume: 

F = Yk + a1(X)Yk~l + • • • +ak(X), 

where the at{ X) are real power series with at(0) = 0 and converging near zero. 
Then F(x, g(x)) = 0 and continuity of g near 0 gives us a Puiseux expansion 
(with real coefficients) cxx

1/k + c2x
2/k + • • • converging to g(x) for small 

positive JC. Translated back to ƒ this means that, asymptotically, f(t)~c-tr 

as t -> oo, for a real constant c and a rational constant r. 
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Note. This proof shows also that for irrational r E R the function xr on 
(0, oo ) is not finitely subanalytic. 
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