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to jut, and ƒ xd\i = <p(/? )̂, for every /i e M^; (ii) there is a#^/ G C" such that 
if/ r E = <p f £ and 8 (^ ) ( / ) = 0 for every ƒ e E; (iii) <p f iC£ is ZS(C,C)-
continuous. 

Let Ra Q C " be the set of those <p such that w(|<p|)* is zero except on a 
meagre set. Then Ra is a norm-closed solid linear subspace of C"; its polar in 
C' is precisely Cx . (Note that C x = {0} in many of the most important 
elementary cases.) The quotient C"/Ra is an M-space with unit; let C be the 
image of C in C"/Ra\ because C D Ra = {0}, C is canonically isomorphic, as 
M-space, to C and C. The Riesz subspace JC n ^ C of C"/Ra is Dedekind 
complete, so can be identified with the Dedekind completion of C 

I have not mentioned the multiplicative structure of C. But this is implicit in 
the Riesz space structure; every M-space with unit has a canonical multiplica­
tive structure, and uniferent Riesz homomorphisms between such spaces are 
multiplicative. Thus there are multiplications on C" and C"/Ra which are 
consistent with the natural multiplications on C and U. 

From what I have written it should be clear that the structure (C9C") is a 
happy hunting ground for anyone who enjoys multifaceted phenomena. I 
should like to conclude by remarking on three of the lines of enquiry suggested 
by this book, (a) Is there any sense in which we can say that U is the largest 
subspace of £°°(X) which can be naturally identified with a subspace of 
C"{X)! It may be necessary to use concepts from mathematical logic to 
explain what "naturally identify" can properly mean, (b) The space X can be 
retrieved, up to homeomorphism, from the Riesz space C, and the L-space C' 
can be found from C", being identifiable as (C") x . But widely varying spaces 
X can give rise to identical C' spaces. Maharam's theorem gives a simple 
complete classification of L-spaces in terms of densities of principal bands; is 
there an easy way to pick out the C' spaces from this classification, and to 
what extent can we derive topological properties of X from the properties of 
C'? (c) Because C" is an M-space with unit, it can be identified with C(Z) for 
an essentially unique compact Hausdorff space Z, and the embedding of C in 
C " corresponds to a continuous surjection q: Z -> X. Is there a useful direct 
topological construction of (Z, q) from XI Which aspects of the structure 
(C, C") can be effectively developed in terms of the triple (X, Z, #)? 
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The book under review is a major treatise on analytical methods in bifurca­
tion theory. The theory is developed in the context of a large variety of 
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examples and the authors also present a substantial amount of the requisite 
background material in nonlinear functional analysis and differential equa­
tions. 

When a system of equations—algebraic, differential, functional,... — 
depends on a parameter, it frequently happens that there are certain values of 
the parameter with the property that small variations in the parameter lead to 
significant changes in the qualitative behavior of the solutions of the corre­
sponding system of equations. Loosely speaking, such values of the parameter 
are called bifurcation values and the general goal of bifurcation theory is to 
identify such points, to be as informative as possible about the nature of the 
solutions of the system of equations near such points and also to study the 
relations of such bifurcations with the local and global structure of the set of 
solutions. The importance of such a program stems from the ubiquity of 
examples of bifurcation occurring in systems of equations that arise naturally. 
Indeed a case can be made that a student's first systematic contact with 
nonlinear analysis should be bifurcation theory; that bifurcation is the central 
phenomenon of nonlinear behavior. It is safe to say that the number of 
interesting nonlinear equations for which one can find explicit solutions is 
exceedingly small. On the other hand advances in computational capability 
have significantly broadened our understanding of nonlinear systems of equa­
tions, revealing the astounding complexity of even the most innocent-looking 
systems. The goal is to obtain a coherent body of results which will lead to an 
understanding of the onset and progress of this complex behavior. 

That solutions of parametrized equations change qualitatively as parameters 
are varied is not a recent observation, of course. Perhaps the bifurcation 
phenomenon that first leads to a systematic mathematical subject is the 
behavior of roots of polynomials. In the real domain, the roots of a quadratic 
coalesce and disappear as the coefficients are varied—a saddle-node bifurca­
tion. In the complex domain, the roots bifurcate into a complex conjugate pair. 
The structure of the roots of systems of polynomial equations is the subject 
matter of algebraic geometry, and bifurcation is an important part of the 
subject. Moreover, algebraic-geometric ideas and tools are now used in other 
areas, under the name singularity theory. Singularity theory can be regarded as 
a generalization of the implicit function theorem, and the machinery is now an 
essential part of nonlinear analysis. 

To get a glimpse of the general context let us consider some simple 
examples. First, the simplest possible. Consider a smooth function ƒ : R X R 
-> R with the property that / ( \ , 0) = 0 for X e R and consider the fixed-point 
equation 

(1) x = / ( X , x ) , ( À , X ) Ê R X R . 

The set of trivial solutions is r = R X {0}, and a point (XOi0) e J1 is a 
bifurcation point of (1) if each neighborhood of ( \ 0 ,0) contains solutions which 
are not in T. The implicit function theorem implies that if (Xo,0) is a 
bifurcation point then df(XQ,0)/dx = 1. However this is not a sufficient 
condition for bifurcation. But if, in addition, 32/(X0,0)/3X3x ^ 0, then the 
Morse lemma implies that there is a curve of solutions passing through (X0,0) 
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and transverse toJT. A solution (X, x) of (1) is called an (asymptotically) stable 
fixed point of /(X, -)jf the sequence of iterates under /(X, •) of points near 3c 
converge to x. If |9/(X, x)/dx\ < 1 then (X, x) is stable while if |9/(X, 3c)/9x| 
> 1 it is unstable. 

Since d2f(\o,0)/d\dx ± 0, and 9/(X0,0)/9x = 1 the stability of the solu­
tions on T changes at X = X0. Suppose that (X, 0) is stable f o r X 0 - e < X < X 0 

and unstable for X0 < X < X0 + e. If 9/(X, x)/dx # 1 on the bifurcating 
branches, then stability is determined by the sign of x — f(x). The figure 
presents several typical basic bifurcation diagrams. 

Near (Xo,0) the solutions of (1) with X < X0, x # 0 are called subcritical, 
and those with X > X0, x # 0 are called supercritical. Thus subcritical solu­
tions are unstable and supercritical solutions are stable. Moreover at (X0,0) 
there is an exchange of stability; in supercritical bifurcation the branch of 
bifurcating solutions inherits the stability. An elementary argument based on 
the mean-value theorem shows there is a connected set of nontrivial solutions 
of (1), whose intersection with T is empty, whose closure contains (Xo,0), and 
which is either unbounded or contains another point of T in its closure. This is 
what it means that the local bifurcation at (X0,0) continues globally. 

A solution of (1) is a fixed point of /(X, •) and thus obviously a fixed point 
of ƒ 2(X, •), the second iterate of /(X, •). Hence T is also a subset of the set of 
solutions of 

(2) x = / 2 ( X , x ) , ( X , x ) e R . 

If (X*, 0) is a point of bifurcation for (2) it is necessary that |9/(X*, 0)/9x| = 1. 
If 9/(X*,0)/9x = - 1 and in addition 92/(X*,0)/9X9;c # 0, then (X*,0) is a 
bifurcation point for equation (2) but not for (1). This is period-doubling 
bifurcation; a branch of fixed points of ƒ2 appears. Further bifurcations can 
occur. For instance, the branch of solutions of (2) emanating from (X*,0) can 
have branches of solutions of 

(3) x = / 4 ( X , x ) , ( X , x ) e R x R 

bifurcating from it. 
The next simplest fixed-point problem is equation (1) where ( À , x ) £ R x R " 

and ƒ: R x R " - * R " with n > 1. In Rw, the derivative 9//9x is an « X « 
matrix. Let o (A) denote the set of eigenvalues in the complex plane of an 
(n X n) matrix A. Later a will denote the spectrum of an infinite-dimensional 
operator. A necessary condition for bifurcation is 1 e a(9/(X0 ,0)/9x). When 
the dimension of the kernel of (/— 9 / ( X 0 , 0 ) / 9 J C ) is odd an additional 
transversality condition is sufficient for bifurcation. The definition of stabil­
ity of a fixed point remains the same. However the linear criterion for stabil­
ity is now a case of whether a(9/(X0,0)/dx) c (z e C| |z| < 1} or 
a(9/(X0 ,0)/9x) n { z e C | | z | > l } ¥ = 0 . Thus changes in stability occur when 
eigenvalues of the Jacobian pass through the unit circle in the complex plane. 
Eigenvalues can cross as complex conjugate pairs, and the menagerie of 
behavior is much wilder. 
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SIMPLE BIFURCATION DIAGRAMS. ' + ' denotes the region where 
/(A, JC) > x, ' - ' denotes the region where f(\,x) < x9's

9 denotes 
a stable solution and 't/' denotes an unstable solution. The first 
diagram exhibits supercritical bifurcation; the bifurcating branch 
carries the stability. The second diagram exhibits subcritical bifur­
cation, and the third exhibits transcritical bifurcation. 

Equation (1) is a useful point from which to begin the study of more 
interesting systems. For a second example, consider a smooth system of 
ordinary differential equations depending on a single real parameter ju: 

(4) *(0-g0*,*(0)> 
t »-* x(t) periodic, 

where g: R X R2 -> R2 is smooth. Suppose further that g(/i,0) = 0 for each 
ju, e R so that x(7) - 0 is a stationary solution of (4) for each /* e R. It 
happens that there are particular values of /x0 from which a branch of 
nonstationary solutions of (4) having period near a value T0 emanates from 
x(t) = 0. In order for such a bifurcation to take place it is necessary that 
ni/T0 G o(dg(ii090)/dx) for some integer n. Then one gets a differentiable 
curve e(fi): I -» C, where / is an interval about /z0, e(/x0) = ni/T0, and e(ju) 
is an eigenvalue of 3g(^,0)/3x. The celebrated Hopf bifurcation theorem 
addresses precisely this situation. If Re(e/(/Ao)) ^ 0 ^ e m o s t basic version of 
Hopf s theorem guarantees such bifurcation of (4). This phenomenon is now 
called Hopf bifurcation. A periodic solution of (4) is called stable if orbits of 
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(4) starting nearby evolve to this periodic solution as T evolves. The stationary 
solution (ju,, 0) of (4) is stable if Re(a(3g(ju, 0)/3x)) c ( - oo, 0) and is unstable 
when Re(a(8g(ju,0)/9x)) n (0, oo) # 0 . Thus the assumption that Re(e/(iLto)) 
=£ 0 guarantees a change in stability of (/A,0) as n goes through JU0. Again 
there is an exchange of stability. Those periodic orbits bifurcating supercriti-
cally are stable and those bifurcating subcritically are unstable. 

In his 1942 paper, Hopf defers to Poincaré, who Hopf felt probably knew 
the essence of periodic bifurcation. Poincaré certainly knew something of 
bifurcation, even if he didn't use the term. In addition to working with the 
phenomenon in the context of dynamics and differential equations, he drew an 
early bifurcation diagram of a variational problem in his investigations of 
rotating stars. 

Again, similar bifurcation occurs for systems (4) for mappings g: R x R " - > 
R", n > 2; again there are more intricate possibilities. In particular, period 
doubling can occur. As the branch of periodic solutions evolves from the trivial 
solution, the period changes continuously. Frequently, it seems, there is a 
solution on the branch at which a secondary branch of solutions bifurcates; the 
periods on this branch vary continuously, except at the secondary bifurcation 
point, where the period doubles. Such period-doubling bifurcation is difficult 
to verify analytically, but is a ubiquitous phenomenon of numerical experi­
ments. Moreover, it is easily explained in the context of equations (1) and (2). 
Let P be a small (n - l)-dimensional transversal to some point on the orbit. 
Under the flow induced by (4), points on P near enough to the orbit return to 
P; this is the Poincaré return map. A fixed point of the Poincaré map 
corresponds to a periodic solution of (4). These solutions of (4) near the curve 
of periodic solutions which occur via a primary Hopf bifurcation can be 
expressed as solutions of an equation of type (1) where ƒ: R X RM_1 -> R""1 

and the primary curve plays the role of the trivial solutions. Thus period 
doubling for the system of differential equations (4) corresponds to period 
doubling for the fixed-point equation (1). This second branch of solutions of 
(4) can, of course, itself period double, and indeed period-doubling cascades 
can occur. M. Feigenbaum's renormalization theory describes the asymptotic 
behavior of such cascades, both qualitatively and quantitatively. 

One of the classic examples of bifurcation goes back to a problem of Euler, 
who tried to describe the possible configurations of a beam subject to a 
compressive load at the ends. The equation he derived was 

ƒ u(x) = Xsin(w(x)), 0 < x < 1, 
( 5 ) \t/ '(0) = t / ( l ) = 0. 

Here u describes the displacement of the beam and X is related to the load. 
The proper framework for (5) is an appropriate Banach space of functions u 
parametrized by X. Again w(x) = 0 i s a solution for all X, so T = {(X,0)|X e 
R} is a set of trivial solutions. If we formally linearize in the Banach space 
about u = 0, we obtain the system 

I u(x) = X0w(x), 0 < x < 1, 
1 } \t/(0) = i/(l) = 0. 
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The mean-value theorem implies that for bifurcation to occur the linearized 
equation (6) must have nontrivial solutions, which means that X0 = (#7r)2for 
some positive integer n. It turns out in this case that each X0 of this form is a 
bifurcation value and the bifurcation branches are global. In more general 
systems, of which (5) is a prototype, for bifurcation to occur it is necessary that 
the linearization of the system about the trivial solution be singular. However, 
singularity of the linearization is not in general sufficient. Sufficient conditions 
for bifurcation involve dimension restrictions on the null space of the lineariza­
tion together with transversality conditions. 

Let us consider bifurcation from the point of view of understanding the 
stability of systems, say of ordinary differential equations. Much of this 
approach can be traced to some of the early work in control theory in the 
mid-1800s by G. Airy and others, who were interested in understanding the 
behavior of mechanical devices, such as a steam engine. As a control on a 
machine is varied, the state of the machine can become unstable and the 
machine's behavior changes abruptly. The point where the state becomes 
unstable is a bifurcation point. If the bifurcation is supercritical, the machine 
settles on a nearby stable bifurcating solution. If it is subcritical, there is no 
nearby stable solution and the machine can exhibit catastrophic behavior. On 
the other hand, the machine is more sensitive to its control the nearer the 
system is to the bifurcation point. Clearly there was a major motivation for 
developing methods for understanding stability and bifurcation, and consider­
able work was done beginning in the late 1800s. J. C. Maxwell wrote a paper 
on the stabilizing effects of governors, and the Russian school of analysts, 
beginning with I. A. Vyshnegradskii, investigated the control of mechanical 
systems and wrote down what we can recognize as bifurcation conditions. 
Today bifurcation and stability are of great importance to people who design 
control systems, and bifurcation theory is taught in engineering courses. As an 
example of current interest, we mention the analysis of power grids, which are 
systems of electrical generators and transmission lines. The mathematical 
model is a system of nonlinear ordinary differential equations, called the swing 
equations. If a fault occurs, the system is changed and the problem is: how to 
drive it to a new stable state (in a matter of less than a second, else circuit 
breakers trip). To date, analysis has mostly involved Lyapunov functions. The 
use of bifurcation theory on the problem is in its infancy. Moreover the 
bifurcation problems are interesting; subcritical bifurcation seems to be the 
rule. 

For an engineer, bifurcation is important because it is related to loss of 
stability; indeed to many engineers, the two terms are virtually synonymous. 

Stability is also a useful concept for variational problems. Consider the 
differential equation (4) for the Euler-Bernoulli rod. The nonlinear functional 
E: ^ [ ( U l - ^ R defined by 

(7) E(u)- f* [\(ù(t))2-\œs(u(t))\dt, 

has as its critical points the solutions of (4); equation (4) is the Euler-Lagrange 
equation of (7). Many problems have such a variational structure involving a 
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Banach space of functions X and a C1 functional E: R x l - ^ R . The 
equation of interest is 

(8) ^{X,x) = Q. 

In this setting solutions of (8) which arise as local minimizers of the functional 
x «-* E(X, x) are often of particular interest. In terms of stability, minimizers 
have the following significance: if solutions of (8) are viewed as the steady-state 
solutions of 

(9) *(0--ff(*,*(0), 
then if x0 is a local isolated minimizer of x •-» E(X, x), those trajectories of (9) 
which start near x0 and which are defined for all time t > 0 converge to x0. A 
change in stability for solutions of (8) corresponds to a change in the character 
of the critical points of x >-> E(X, x). In the case of the Euler-Bernoulli rod, 
the solution u = 0 is a minimizer of E for X < 0 while f or X > 0 it is not. 
Thus the trivial solution is already unstable as a critical point of (7) at the first 
bifurcation point X = IT2. This is because (5) or (7) is not a complete model. 
The end of the rod is free to rotate. The problem should be constrained by 
ƒ sin(w(f )) dt = 0. John Maddocks has shown the bifurcation at X = IT1 of the 
constrained problem does accompany a change of stability. More occurs. For 
the constrained problem, there is a secondary bifurcation off of the first 
branch which carries the stability. It occurs when the two ends of the rod are 
brought together and the solutions on the secondary branch are rotations 
about the common point. Thus the global bifurcation diagram has a connec­
tion between the branch of solutions which has the end x = 1 above the end 
x = 0 and the branch of solutions with that end below. 

The mathematical analysis of a particular bifurcation problem has both local 
and global features. It is frequently convenient to formulate a system of 
equations as a functional equation of the form 

(10) F(X,x) = 0, 

where F: An X X -> Y for Banach spaces X and Y and coefficient field A. 
Suppose F(X0, x0) = 0 and ƒ is smooth with 3F(X0, x0)/dx a Fredholm 
operator. Then the implicit function theorem implies that near (X0, x0), 
equation (10) is equivalent to a finite-dimensional equation 

(11) G(X,x) = 0, 

where G: An X A* -> A*+/, with k the dimension of the kernel of 
9F(X0, JC0)/3JC, and / the Fredholm index of dF(X0, x0)/dx. This procedure is 
often called the Lyapunov-Schmidt procedure or the alternative method. In the 
case k — I = 1, so that (11) is a single scalar equation in n + k unknowns, 
powerful analytic tools are available. When A == C and F is holomorphic, G is 
holomorphic and the Weierstrass Preparation Theorem gives a precise descrip­
tion of the solutions of (11) as the zeroes of polynomials. When A = R and F 
is smooth, the Malgrange Preparation Theorem delivers similar information 
about the solutions of (11). The basic idea is of course that information about 
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the initial Taylor coefficients of G should yield information about the solutions 
of (11), and hence (10), near (X0, x0). 

The preparation theorems can be considered generalizations of the implicit 
function theorem. If F: C X C -> Cn is analytic, ƒ(0,0) = 0 and Z>i/(0,0) ± 
0, the implicit function theorem implies /(w, z) = 0 can be solved for w = h(z) 
analytically in a neighborhood of (0,0). The Weierstrass Preparation Theorem 
considers the case that /(w,0) = wkg(w) for g(w) # 0 and implies that w can 
be solved for as the roots of a A:th-degree polynomial equation 

(12) ^ + flM(z)wk"1+ • • • + a o ( z ) = 0 

(for the case just above set h = -a0). Thus the analytic question of the 
structure of the solutions of /(w, z) = 0 is reduced to an algebraic-geometric 
question. Bifurcation theory involves understanding the zeroes of a function ƒ 
at such a branch point. The procedure outlined above is the essence of 
singularity theory. The bifurcation analysis of (10) is reduced to the finite-
dimensional analysis of (11), called the bifurcation function. The resulting 
algebraic function (12) is called an unfolding of (11). 

For the global analysis of (10), topological ideas play an essential role. When 
n = 1 and each F(X, •) lies in a class of operators for which a topological 
degree is defined (for example, when F(X, •) is a compact perturbation of the 
identity, the Leray-Schauder degree is defined), then a change in the degree of 
F(X, •) on a neighborhood of x = 0 as X passes through X0 implies that a 
bifurcation branch emanates from (Xo,0). If there were no branching, by the 
homotopy property the degree would not change. This is the argument of 
Krasnoselskii and it ties together the two aspects of degree—its topological 
character and its relation to the local structure of a solution. Rabinowitz used 
the topology to extend Krasnoselskii's argument to produce from the same 
local assumptions a global conclusion in the sense we did for equation (1). 
Since then, more exotic topological invariants have been used in the same way 
to prove global versions of the Hopf theorem and other bifurcation results. If 
global results are combined with other features of a problem, more complete 
results can be obtained. For example, since (5) is a nonlinear Sturm-Liouville 
problem, the nodal structure the solutions inherit from the linear problem (6) is 
preserved along branches. Thus there are distinct global branches characterized 
by their nodal structures. Global results can be used to prove existence. For 
example, if it is known there is only one bifurcation point and solutions are a 
priori bounded, then the branch must extend over all parameter values in one 
or the other direction from the bifurcation point. 

In the case that equation (11) is variational, in the sense that Y = X*, the 
dual space of X, and there is a function <J>: Rw X X -> R so that 9<#>(X, x)/dx 
— / (X, x),Morse theory and Ljusternik-Schnirelman category are available for 
both local and global results. Incidentally we have implicitly assumed bifurca­
tion occurs as a connected set, at least locally. When bifurcation is established 
with degree or singularity theory, such is the case. However, there is an 
example of R. Böhme, wherein the bifurcation is established by a variational 
argument, and the solutions form an infinite set of disjoint circles collapsing 
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down to the bifurcation point. The example is smooth, but not analytic. In the 
analytic category, such behavior seems not to happen. 

Finally there is bifurcation from the point of view of dynamics, with 
cascades of period-doubling, strange attractors, homoclinic orbits, etc. This has 
been, and continues to be, an area of rapid development, and the machinery, 
results, and even general concepts, are still evolving. 

The point of all this is that bifurcation is a virtually universal phenomenon 
of nonlinear behavior and "bifurcation theory" has different flavors in differ­
ent areas. A reader might be attracted to one book and find another com­
pletely impenetrable. Within the last decade or so, bifurcation theory has 
matured to the point that a large number and variety of expositions have been 
written, as a perusal of reviews in this Bulletin, the SI AM Review and the 
Bulletin of the London Mathematical Society will show. Let us now turn to the 
book of Chow and Hale. 

Since bifurcation theory is meaningful insofar as it gives insight into the 
behavior of actual equations, any exposition of bifurcation theory is motivated 
by a number of explicit applications. Thus Chapter 1 contains discussion of the 
static solutions of the Euler-Bernoulli rod, Hopf bifurcation, and planar 
homoclinic orbits. Chapter 2 is a 70 page review of fundamental techniques of 
nonlinear analysis. Chapter 3 is devoted to some applications of the implicit 
function theorem. Chapter 4 is a similar review of variational methods, with 
applications to Hamiltonian systems and certain partial differential equations. 
In Chapter 5 the authors get down to bifurcation theory per se, by developing 
the relations between the nonlinear equation and its linearization about a 
trivial solution. The multiplicity of eigenvalues and multiple parameters are 
discussed and degree theory is used to prove Paul Rabinowitz's global result. 
In Chapter 6, the effects of higher-order terms are investigated. There is a brief 
introduction to the effects of symmetry. The book does not attempt to develop 
systematically the (currently active) subject of bifurcation under symmetry. 
Some later examples involve symmetry, but for instance in the later example of 
the forced Duffing's equation, the bifurcation analysis is done directly. What is 
emphasized is that symmetry complicates the analysis. Beginning in this 
chapter, the implicit function theorem is inadequate and more general singu­
larity theory is used. Chapter 7 discusses bifurcation from more complicated 
singularities. Chapter 8 contains several applications of the earlier theory: von 
Karman's equation, Brusselator, Duffing's equation. 

To this point in the book, the theory developed is concerned with the 
bifurcation of the zero set of a functional—what the authors call static 
bifurcation, since no dynamics is involved. Chapter 10 begins what they call 
dynamic bifurcation theory; the behavior depends on the time evolution of the 
system. In particular, in Chapter 10 they introduce the center-manifold theo­
rem and use it to prove the "generic Hopf bifurcation theorem" and ancillary 
results. Chapters 10 and 11 consider planar systems, for autonomous and 
forced systems, respectively. A major theme here is the behavior of homoclinic 
orbits. There is a brief introduction to symbolic dynamics and also a brief 
introduction to turbulence (chaos?), but these topics in dynamics are not 
pursued further. Horseshoes are drawn but not discussed much. Chapter 12 
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introduces normal forms and uses them to prove the standard results in 
averaging theory and to discuss integral manifolds and bifurcation to tori. 
Chapter 13 discusses degenerate bifurcation (using unfoldings) and Chapter 14 
discusses the perturbation theory of the spectrum of linear operators. 

The flavor and range of the book can be gauged from this survey of the 
contents. There is considerable material covered. Still, of course, not everything 
can be covered. It is not a flaw that some topics (such as bifurcation under 
symmetry and topics in dynamics) are omitted or cursorily discussed; the 
authors had to make choices. Indeed, as Chow and Hale certainly knew, there 
are other recent books on these two particular topics, and they chose not to 
duplicate material. The organization is via method, not via type of application. 
The flavor of the book is analytic. It is written by analysts for analysts. The 
authors state explicitly "an alternative title for this book would perhaps be 
Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary 
objective is to discuss those aspect of bifurcation theory which are particularly 
meaningful to differential equations" (p. vii). Thus a person with some 
background in analysis will feel most at home. For example, some results from 
analysis (especially functional analysis) are mentioned casually without refer­
ence or citation. Some instances, largely from Chapter 3, which is mostly 
introductory: maximum principle (p. I l l—do the authors mean the minimax 
characterization of eigenvalues?), Mazur's Theorem (p. 121), Friedrich's in­
equality (p. 122), usual bootstrap argument (p. 153), inverse of Laplacian (p. 
239). To be more precise about the flavor of the book, it approaches bifurca­
tion theory from the point of view of singularity theory. Even with topics that 
are not part of singularity theory, the authors use the ideas of singularity 
theory. For example, when degree is developed, generic approximations are 
used. This approach, motivated to some extent by the development of numeri­
cal continuation methods, has its advantages. It emphasizes that the degree of 
an operator counts zeroes or fixed points, taking into account the local 
structure of the operator around the points. Once the machinery is developed, 
proofs of particular results are often conceptual and sometimes technically 
trivial. 

We are impressed with the scope of the book and its novel treatment of 
several topics. However, the book is not unflawed. We get the impression the 
authors' hearts were in the applications of singularity theory to ordinary 
differential equations. In writing a broader treatment of bifurcation, the 
authors got careless at points, and incomplete at others. Some of the subtleties 
of working in Banach spaces are missing or elided. For example, Leray-Schauder 
degree is never developed, although it is used. A novice reader will not develop 
an understanding that some kind of compactness of operators or solutions is 
necessary for things to work. As for carelessness: consider some specific cases. 
The authors attempt (pp. 67-68) to prove the Borsuk-Ulam theorem by 
making an approximation ƒ to an odd function such that the zeroes are all 
nondegenerate. They then consider f(x)=f(x)~f(-x) and claim it also has 
nondegenerate zeroes and compute the degree by counting. However it is by no 
means clear that ƒ has nondegenerate zeroes. Approximation ideas work, but a 
more careful approximation is needed near x = 0. Just after this on p. 68, the 
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authors slightly misstate a result. They state that an odd continuous map from 
Sn~l to R" has a zero. As stated, the result is clearly false. However, they then 
offer an argument that would work for both the correct and incorrect state­
ments, except that they misapply the Tietze extension theorem. As one more 
example, consider the argument of the Rabinowitz global bifurcation theorem. 
The proof strikes us as somewhat muddled, but in particular, there is a 
technical mistake in that a function p is introduced which does not do what it 
is supposed to do (there may be bifurcation points not connected to the K0 of 
the theorem). The discussion of this theorem is one of the points where details 
of compactness get swept under the rug. (Also, it is not as complicated as the 
authors indicate to go from the finite-dimensional version (which the authors 
have just proved in a manner more in the spirit of the rest of the book) to the 
Banach-space version.) 

The authors suggest several ways the book could be used in a course. With 
an expert teacher, the book could indeed make a good text. We cannot really 
recommend the book to a novice in analysis. The book is more likely to be 
used as a professional reference. Much material is here that is not conveniently 
available elsewhere. At the end of each chapter there are extensive biblio­
graphic comments, which trace the history and development of the chapter's 
results. The list of references is impressive. The reviewers picked a few papers 
at random. Virtually all within the purview of the book were included in the 
list of references. Already the book is regularly cited in papers as an expository 
source. To make the book more valuable as a reference, we would suggest the 
authors expand their index in the second edition. The table of contents is more 
useful than the index. While the table of contents is 4 4- pages long and the 
reference list is 19 pages of small print, the index is less than 3 pages. 

The book, which was published in 1982, has become one of the standard 
references in the research literature on the subject. Since bifurcation theory is a 
field which is rapidly developing and also one which has many contact points 
with diverse areas of mathematics and applied science, it is no small task to 
present a treatment which is at once broad and coherent. It is a major 
accomplishment of Chow and Hale to have written this exposition. 

J. C. ALEXANDER 

P. M. FITZPATRICK 




