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1. Introduction. The theme of the books under review is approximation', that 
is, how well do simple models of operators approximate larger, less understood 
classes? This usually means approximation in the operator norm, but it may 
well ask for more. For example, one might ask that the error of estimation be 
compact. As the set of compact operators is the only proper, closed, two-sided 
ideal in the algebra 38(3^) of bounded operators on a separable Hubert space 
3tf, this is a natural constraint. 

The study of bounded operators on Hilbert space has often been motivated 
by linear algebra. There is a popular, but naive, notion that finite dimensions 
are well understood. Operator theorists are keen to find the infinite-dimen­
sional analogues of the finite-dimensional results. But they obtain even more 
pleasure when they find out why such analogues cannot hold. 

Halmos, in his role as the master popularizer of this subject, has asked many 
questions about approximation of operators. In particular, his famous Ten 
problems in Hilbert space [Ha2] has provoked some of the most important work 
in this area. (See [Ha3] for the progress report.) Here we will mention two 
examples for motivation. 

Everyone knows that a normal matrix can be diagonalized. This is not the 
case in infinite dimensions. For example, on L2(0,1), the operator given by 
(Mf)(x) = xf(x) has no eigenvalues. Halmos asked: Is every normal operator 
the sum of a diagonal operator and a compact one? The answer (see §2) has 
had many ramifications. 

On a finite-dimensional space, the set of nilpotent matrices is closed, and 
consists of all matrices with spectrum (0). In infinite dimensions, the operators 
with spectrum {0} (called quasinilpotents) are the operators satisfying 

lim | | r" | | 1 A = 0. 

91 



92 BOOK REVIEWS 

These need not be nilpotent, yet still may be limits of nilpotents. (For 
example, if Nk is the k X k nilpotent, Jordan block, let T = Nx ® \N2 e \N3 

0 • • • .) Halmos asked: Is every quasinilpotent operator the limit of nilpo­
tents? The answer involves a deep analysis of the structure of arbitrary 
operators (see §4). 

2. Normal operators. The appropriate analogue of diagonalization of matrices 
is the spectral theorem of Hilbert and von Neumann [DS]. This represents a 
normal operator as an integral over the spectrum of a certain "projection-val­
ued measure". From this theorem, it is a simple exercise to show that a normal 
operator is the limit of diagonalizable ones. But for some purposes, this is not 
sufficient. In 1909, H. Weyl [W] showed that every Hermitian operator is the 
sum of a diagonal operator and a compact operator K of (arbitrarily) small 
norm. 

Halmos's question was answered by David Berg [Bl] and independently by 
W. Sikonia [S]. They showed: 

THEOREM WNBS. Let N be a normal operator on a separable Hilbert space. 
Given e > 0, there is a diagonal operator D and a compact operator K with 
\\K\\ < e such that N = D + K. 

This theorem is the cornerstone of the work of Brown, Douglas and Fillmore 
[BDF1]. They studied operators T such that TT* - T*T is compact (essen­
tially normal operators). These are precisely the operators such that the image 
TT{T) is normal in the quotient C* algebra stf of @(3tf') by the compact 
operators. The original question which motivated their work was: When is an 
essentially normal operator equal to the sum of a normal operator and a 
compact one? 

An operator T is Fredholm if TT(T) is invertible. The index group sfx/s&^ 
(where s/^1 is the connected component of the identity in the group s#~x of 
invertible elements in stf) is isomorphic to the integers. Moreover, the canoni­
cal image of T in Z is called the Fredholm index and is given by the formula 

i n d r = n u l l ( r ) - n u l l ( r * ) 
where null(T) is the dimension of the kernel (here necessarily finite). 

Since \\Nx\\ = ||#*.x|| for every vector x and normal operator N, it follows 
that ind(JV — X) = 0 whenever N - X is Fredholm. Index is invariant under 
compact perturbations, so if T is the sum of a normal operator and a compact 
one, then ind(T - X) = 0 whenever this is defined. This makes it easy to give a 
simple example of an essentially normal operator which is not of this form. Let 
S be the unilateral shift (i.e., {en}n>0 is an orthonormal basis and Sen = en+1). 
An easy computation shows that S*S - SS* is a rank one projection onto the 
span of {eo}> s o $ is essentially normal. S has kernel {0}, and ker(S*) = 
span{ e0}. Thus ind S = - 1 , and S is not normal plus compact. 

The converse is the remarkable result of Brown, Douglas, and Fillmore 
[BDF1]. The essential spectrum O(TTT) of an operator T will be denoted oe(T). 

THEOREM BDF. Suppose T is essentially normal and ind(T -X) = 0forallX 
in C \ oe(T). Then there is a normal operator N and a compact operator K such 
that T= N + K. 
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To attack the problem, they considered the set of essentially normal opera­
tors T with fixed essential spectrum X = oe(T). This set, modulo a natural 
equivalence relation, turns out to be a group Ext( X) under the group operation 
of direct sum. The WNBS Theorem can be interpreted as saying that Ext(X) 
has a unique trivial element. The proof of the BDF Theorem involves ideas 
from algebraic topology. They identify certain natural pairings with ^-theory 
[BDF2], and this has led to a tremendous amount of work on C* algebras. 

We only mention one more development in this direction—an important 
theorem of Dan Voiculescu [VI]. In the context of C* algebras, it provides a 
trivial element for Ext(J^) in many noncommutative situations. Here we are 
interested in a useful operator-theoretic corollary. If B is an operator, let B(cc) 

denote B © B © B © • • • acting on the /2-direct sum of countably many 
Hubert spaces. 

THEOREM V. Let T be a bounded operator. Let p be any separable represen­
tation of C*(7r(T)),and let B = P(TT(T)). Given e > 0, there is a compact 
operator K with \\K\\ < e such that T - Kis unitarily equivalent to T © B(cc\ 

This shows, among other things, that the set of operators with lots of 
reducing subspaces are dense in &(Jf). This answers another question of 
Halmos. And, this is a phenomenon quite distinct from finite dimensions, 
where the set of reducible matrices is a proper closed subset. 

3. Quasitriangularity. One cannot discuss operator theory without briefly 
mentioning the invariant subspace probelm. Every matrix can be put into 
" triangular form", but the quest for an infinite-dimensional analogue has been 
elusive. A lot of important work has been done in this area in the past fifteen 
years, but we will not discuss it here. However, it led to the notion of a 
quasitriangular operator, again due to Halmos [Hal]. An operator A is quasitri-
angular if there is an increasing sequence Pn of finite rank projections converg­
ing pointwise to the identity such that 

lim ||(7 -P„)AP„|| = 0. 
n~* oo 

Now ( / - Pn)APn = 0 is equivalent to ?n3tf being invariant under A\ so 
quasitriangular operators have a lot of "almost invariant" subspaces. This 
notion, but not the name, played a key role in Aronszajn and Smith's proof 
[AS] that every compact operator has an invariant subspace. 

It is not difficult to show that A is quasitriangular if and only if A = T + K, 
where T is triangular with respect to some orthonormal basis, and K is 
compact. Such operators are limits of triangular operators because the norm of 
K can be made arbitrarily small. Normal operators and quasinilpotent opera­
tors are quasitriangular. The class is closed under compact perturbations and 
similarity transformations. It is norm closed and closed under taking poly­
nomials and direct sums. Naturally upper triangular operators such as the 
backwards shift S* are also quasitriangular. 

It is perhaps more useful to know a nonquasitriangular operator. Such an 
operator is the unilateral shift S. Suppose M is a finite-dimensional subspace 
containing e0. Since S is an isometry with range orthogonal to e0, a dimension 
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argument shows that some unit vector x in Ji is mapped to a vector Sx 
orthogonal to Jt. An approximation argument now shows that 

lim | | ( /-P„)Si>„| | = l 
/ I - *00 

for any sequence Pn of finite rank projections tending to the identity pointwise. 
Intuitively speaking, there was not enough room in Jt for SJt because kerS is 
smaller than kerS* = (Ran S)1. 

This generalizes in the following way. An operator T is called semi-Fredholm 
if it has closed range and one of null(r) or nul^T7*) is finite. Index is 
extended to include ± oo in the natural way. One obtains as above that if 
T — X is semi-Fredholm and ind(T - X) < 0, then T is not quasitriangular. 
Constantin Apostol, Ciprian Foia§, and Dan Voiculescu prove the remarkable 
converse [AFV1]. 

THEOREM AFV1. An operator T is quasitriangular if and only if ind(T — X) 
> 0 whenever T — \ is semi-Fredholm. 

One striking corollary is that nonquasitriangular operators (rather than 
quasitriangular operators) have a ready supply of invariant subspaces. This is 
because, for such operators, there is a scalar X so that Ran(jT - X) is a proper 
closed subspace. This subspace is invariant, not only for T, but for every 
operator commuting with T\ So people searching for the elusive invariant 
subspace need only consider operators T such that both T and T* are 
quasitriangular, the so-called biquasitriangular operators. 

4. Nilpotents. Shortly after the results of the previous section were obtained, 
the same trio of Apostol, Foia§, and Voiculescu cracked the Halmos problem 
mentioned in the introduction by giving a complete spectral characterization of 
the closure of the set of nilpotents. Several big steps had been taken earlier by 
Apostol [Al, A2, AV], Herrero [HI] and Voiculescu [V2]. 

Halmos was quick to point out in [Ha2] that his question was not quite right. 
An example of Kakutani shows that the limit of nilpotents can have a large 
spectrum. This phenomenon can occur because spectrum is not continuous, 
but only upper semicontinuous. Nonetheless, the semicontinuity of the spec­
trum implies that if T is the limit of nilpotents, then the spectrum o(T) is 
connected and contains 0. The same goes for the essential spectrum (by 
considering TT(T)). NOW for any X =t 0, and every nilpotent <2, Q - X is 
invertible and hence ind(<2 - X) = 0. Since the set of semi-Fredholm operators 
is open and index is locally constant, one deduces that if T is the limit of 
nilpotents, then ind(T — X) = 0 wherever this index is defined. By Theorem 
AFV1, this is equivalent to saying that T is biquasitriangular. The second 
marvelous theorem of Apostol, Foia§ and Voiculescu [AFV2] can now be 
stated. 

THEOREM AFV2. An operator T is the limit of nilpotent operators if and only if 
(i) o(T) is connected and contains {0}, 

(ii) ae(T) is connected and contains {0}, 
(iii) ind(T — X) = 0 whenever T — X is semi-Fredholm. 
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An important step in this argument is a theorem of Herrero [HI] which 
shows that if N is normal with connected spectrum including {0}, then JV is 
the limit of nilpotents. There is now a fairly easy proof of this using a method 
of Berg [B2]. A short proof that every quasinilpotent operator is the limit of 
nilpotents is available in [AFP] based on Theorem V. 

An operator T is said to be algebraic if it satisfies a polynomial identity 
p(T) = 0. Such operators are (nonorthogonal) algebraic direct sums of opera­
tors Xi + Ni9 where the Nt are nilpotent. Apostol and Foia§ [AF] and Foia§, 
Pearcy, Voiculescu [FPV] develop canonical forms for biquasitriangular opera­
tors. This is improved upon by Voiculescu [V2], who uses it to prove 

THEOREM V2. The closure of the set of algebraic operators is the set of 
biquasitriangular operators. 

An interesting and shorter proof of both Theorem V2 and Theorem AFV2 is 
given in the books under review (Chapter 5). Again, this proof relies on 
Voiculescu's Theorem V, as well as on Theorem BDF. 

5. Similarity orbits. The previous sections provide several examples of 
spectral descriptions of closed, similarity-invariant sets. A natural question 
along these lines is to ask for a description of the closure of 

ST{T)= {WTW~l: JFinvertible}, 

the similarity orbit of a single operator T. Certain special cases follow using 
the techniques of the nilpotent case. For example, Barria and Herrero [BH1] 
show that if N is normal with perfect spectrum, then ó?(N)~ consists of all 
biquasitriangular operators A with perfect spectrum such that oe(A) contains 
o(N) and every component meets o(N). 

Apostol [A3] and Herrero [H2] independently show that if Q is quasinilpo­
tent and Qn is never compact, then Q is universal in the sense that y(Q)~ is 
the closure of all nilpotents. The general case, however, has required new 
techniques and analysis. The case of nilpotent operators is especially elusive 
and is not yet completely understood. But other than certain technicalities 
involving isolated points of the essential spectrum, Apostol, Herrero and 
Voiculescu have solved this problem. (See [AHV] for an announcement.) 

The bulk of Chapters 7, 8 and 9 of the books under review is devoted to the 
proof of their theorem. Most of this material has not been published elsewhere. 
These results, being hot off the press, have not yet received widespread use. 
Yet they should prove to be very important. In particular, the methods of 
structural analysis are likely to become powerful tools for the operator theorist. 

Even the finite-dimensional case is interesting, although elementary. Barria 
and Herrero [BH2] prove 

THEOREM BH. Let T in Jt'n be a matrix with minimal polynomial p. Then 
Sf(T)- equals 

{ Q G Jt'n: rank q(Q) < rank q(T) for all q which dividep}. 

This result is useful in dealing with isolated eigenvalues of finite multiplicity in 
the infinite-dimensional case. 
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To get a handle on the general situation, let us collect together that spectral 
information which comes easily. Suppose A belongs to ^(T)~t Then a (A) 
contains o(T\ and each component of a (A) meets o(T). The same goes for 
ae(A) relative to oe(T). In fact, each component of 

aire(A) = (X: A — X is not semi-Fredholm} 

must meet oe(T). As the set of semi-Fredholm operators is open, olre(A) 
contains olre(T) and 

ind(^ - X) = ind(r - X) for all X € olre(A). 

It is necessary to introduce one more notion. If A is semi-Fredholm, the 
minimal index is defined as 

min ind( A) = min{nul A, nul A* } . 

An operator is called smooth if min ind(r - X) - 0 for all X £ olre(T). A 
smooth operator will be called very smooth if oe(T) is perfect as well. 

Now a special case of the Apostol-Herrero-Voiculescu theorem can be 
stated. 

THEOREM AHV. Suppose T belongs to 3&(3V) and is very smooth. Then A 
belongs to Sf(T)~ if and only if olre(A) contains olre(T\ each component of 
olre{A) meets oe(T\ and 'mà(A - X) = ind(T - X) for all X £ olre(A). 

All of these theorems have dealt with spectral invariants for similarity-in­
variant sets. Once one has these invariants in hand, it is natural to attempt to 
compute the distance from an arbitrary operator to such a set. This can indeed 
be done in many cases. The interested reader is referred to Chapter 12 of the 
books for a good survey of the present knowledge and comprehensive refer­
ences. 

6. The books. Up until this point, I have been talking about the mathematics 
and not the books. The books deal with this marvelous material, most of which 
appears in book form for the first time. Especially in the first volume, which 
deals with the older material, the authors have taken pains to provide a unified 
treatment and more direct proofs than appear in the literature. It is a valuable 
tool for the researcher in the field. 

It is less well suited for a neophyte or a casual reader. In the authors' effort 
to be comprehensive, they often state results in a long and tedious fashion. It 
would help a lot if major results were isolated in a clear and simply stated 
form. Still, an ambitious student can learn a lot from these books. 

As I mentioned earlier, the material in section 5 appears in print in these 
volumes for the first time. I believe this is unfortunate. The proofs are long and 
involved. This material is bound to be put in a more palatable form in a few 
years. As it stands, it requires a substantial commitment from any reader 
intending to fight through these chapters. This material deserves to be better 
known, but I expect that this book will not remain the preferred source. 
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Volume II contains much material that has not been discussed here. It has a 
nice selection of topics, which is to a large extent work of the authors. Most of 
this appears in print elsewhere. 

These books have an excellent bibliography. Notes at the end of each 
chapter enable readers to track down the references easily. Also, the index of 
notation is very handy. These features and the selection of material make these 
books a valuable tool for the operator theorist. It is hard work to go through 
these volumes, but it is worth the effort. 
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A Riesz space is a (real) linear space E endowed with a partial ordering < 
which is translation-invariant (i.e. x<,y=>x + z^y + z) and a lattice (i.e. 
x V y = sup{jc, y) and x A j = inf{x, y} exist for all x and y), and such 
that ax > 0 whenever x > 0 in E and a > 0 in R. Write E+= {x: x > 0}. A 
Riesz norm on E is a norm || || such that ||x|| < \\y\\ whenever \x\ < \y\, where 
\x\ = x V ( — x). A Banach lattice is a Riesz space with a Riesz norm under 
which it is complete. 

From the beginnings of functional analysis it has been recognized that many 
of the most important normed spaces are endowed naturally with Riesz space 
structures. The interactions of the three aspects of a Banach lattice—its linear, 
metric and order structures—lead to a rich and delightful, if not particularly 
deep, tapestry of interwoven motifs. We can study these either in the general, 
setting up an abstract theory, or in the particular, concentrating on well-known 
spaces of special importance. The book under review takes the latter course, 
though fully committed, in language and spirit, to the wider theory of normed 
Riesz spaces. 

An M-space is a Banach lattice E in which \\x V y\\ = max(||x||, || j>||) 
whenever x, y e E+; an L-space is a Banach lattice E in which \\x + y\\ = 
||x|| 4- ||y|| for all x, y e E+. There are effective representation theorems for 
both classes. A Banach lattice is an M-space iff it is isomorphic, as normed 
Riesz space, to the space C0(X) of continuous real-valued functions vanishing 
at infinity on some locally compact Hausdorff space X; it is an L-space iff it is 
isomorphic to the space l}{ X) of equivalence classes of integrable real-valued 
functions on some measure space X. Among the M-spaces we naturally wish to 
identify those corresponding to compact spaces X\ these are precisely the 
M-spaces with a unit e such that, for any x, ||x|| < 1 iff |*| < e. 

Corresponding to the rich internal structure of Riesz spaces is an ap­
propriately elaborate theory of morphisms between them. If E and F are Riesz 


