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ALMOST ALL p-GROUPS HAVE A U T O M O R P H I S M 
G R O U P A p-GROUP 

URSULA MARTIN 

1. Introduct ion. Groups of prime-power order are tantalizing objects. 
On one hand they have a delicate and sophisticated combinatorial structure 
related to representations of GL(n, p) in characteristic p; on the other there are 
so many of them and their structure is so varied that any kind of classification 
seems hopeless and powerful general theorems are rare. 

This paper is concerned with the proof that a random group of prime-
power order has no automorphisms of order coprime to p. Although in the 
course of the proof we establish several new combinatorial results about finite 
p-groups, the result gives further evidence of the apparent structurelessness 
of groups of prime-power order. The result may not seem entirely plausible 
at first sight, since most groups of prime-power order with which we are 
familiar arise as subgroups of Chevalley groups or simple groups and admit 
automorphisms of order coprime to p. Indeed, apart from the dihedral group 
of order eight, the known examples of such groups are given by complicated 
and unnatural-looking constructions. Intuitively, what our result is saying 
is that most p-groups are complicated and unnatural-looking, and that the 
familiar examples are far from typical. 

At the heart of our proof lies the combinatorics which links finite p-groups 
and representations of the general linear group GL(n,p). Isomorphism classes 
of abelian groups of order p n correspond to partitions of n and Hall [Ha] 
showed that questions about these groups could be answered in terms of 
polynomials which form an algebra which can be identified with the alge­
bra of symmetric functions. An account is given in [Mac]. Hall's polynomials 
can be used to give exact formulae for the number of subgroups of an abelian 
p-group and were used by Green [Gr] to determine the characters of the gen­
eral linear group. In this work we extend Hall's results to give upper bounds 
for the number of normal subgroups of a nonabelian p-group, and use sim­
ilar techniques to estimate the number of subspaces of a GL (n,p) module 
in characteristic p which are left invariant by no non-identity element of the 
group. 

2. Sta tement of results. To state our results precisely we introduce 
some notation. For any prime p and group H the Frattini series is defined as 

# i = i? 

and 
# i+i = # f [ # , # i ] for»>l. 
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A p-group G is said to have Frattini length n if Gn is the last nonidentity 
term of its Frattini series. Then G2 = $(G) is the Frattini subgroup of G, and 
G/G2 is an elementary abelian p-group of rank d, the minimum number of 
generators of G. Any automorphism of G induces an automorphism of G/G2, 
so we have an exact sequence 

1 -> K{G) -> Aut G -+ A(G) -+ 1, 

where K(G) is the subgroup of Aut G which induces the identity on G/G2 
and A(G) is the group of automorphisms induced by Aut(G) on G/G2. Then 
K(G) has order a power of p, and A(G) is a subgroup of Aut(G/G2), which is 
isomorphic to GL(d,p). Thus if A(G) = 1, G has no automorphisms of order 
coprime to p. Our result is 

THEOREM 1. Let p be a prime, let a^n be the number of d-generator p-
groups of Frattini class n, and e^n the number of these satisfying A(G) = 1. 
Then 

lim ^ = 1. 
d->oo ed,n 

While our result shows that A(G) is usually the identity, there is little 
restriction on what other values it can have. Bryant and Kovacs [BK] proved 
that if i t is a subgroup of GL (d,p) for any d > 1 then there is a finite d-
generator p-group G such that A(G) is isomorphic to K and acts on G/G2 
as K. Even when a p-group is restricted to being of nilpotency class two, we 
have little control over its automorphism group. Webb [We] showed that if 
M is any finite graph satisfying a very weak technical condition then there is 
a finite p-group G of nilpotency class two with A(G) isomorphic to Aut M, 
which means that any finite group can occur as A(G) in this case. 

3. Description of proof. Our proof is based on an analysis of the struc­
ture of the quotients of the free group F on d generators by factors of its 
Frattini series. For any n > 1 the automorphism group of H = F/Fn+i is an 
extension of a p-group by A(H) which is isomorphic to GL(d,p): each factor 
Hj/Hj+i = Fj/Fj+i becomes a GL(d,p) module in a natural way. For j < p 
the module structure was described by Higman [Hi], but for i > p the struc­
ture is not known in general. For example, F2/F3 is isomorphic to the direct 
sum of F/F2 and its exterior square for odd p, and to a nonsplit extension of 
the exterior square by F/F2 when p is 2. 

Our theorem follows from the three results stated below. In Theorem 2 we 
establish a correspondence between d-generator p-groups of class n and orbits 
of normal subgroups of H under Aut H. Theorem 3 shows that almost all 
these groups correspond to orbits under the action of GL(d,p) of subspaces 
of Hn. In Theorem 4 we show that almost all such orbits are regular ones, so 
that they correspond to d-generator p-groups with A(G) = 1. Taken together, 
these results prove Theorem 1. 

To state the theorems precisely we introduce the following notation. 
Ad,n •= the set of isomorphism classes of d-generator p-groups of Frattini 

class n; 
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Bd,n '•= the subset of Ad,n corresponding to subgroups of H which lie in 
Hn', 

62 n := the number of subspaces of i?n ; 
Cd,n •= the subset of Bd,n consisting of groups with A(G) = 1; 
Sd := the order of GL(d,p); 
dn := the Witt number (1/n) X)t|n^V(nA)-
Then we have 

THEOREM 2. 1. Ad,n bijects with the set of orbits of Ant H on normal 
subgroups of H which lie in H2. 

2. Cdn bijects with the set of regular orbits of GL(d,p) on subspaces 
0fHn. 

THEOREM 3. Letn>2 and 

w = -dl + dn_i - dn/2(n - 1) + d2/4. 

Then 

0 < 14^4 - 1 < o(pw). 
\t>d,n\ 

THEOREM 4. 1. Let 

x = d2-dn/2 ifn>3 

and 

Then 

2. Let 

and 

Then 

x = —d ifn = 2. 

l<sj-^<l + 0(px). 

y = d 2 -dü /4 t / n > 3 

y = —d if n — 2. 

| W , n | 

4. Proof of Theorems 3 and 4. We prove Theorem 3 by estimating the 
number of normal subgroups of H. To do this we first estimate in Theorem 5 
the number of normal subgroups of fixed type of an arbitrary p-group, gener­
alizing an old result about abelian p-groups. Our estimate depends on certain 
parameters which are difficult to work out in general, but are calculated for 
factors of the Frattini series of free groups in Theorem 6. 

So let H be a finite p-group of Frattini class n. If U is a normal subgroup 
of # , let 

Ui = un Hi/u n &+! s (u n Hi)Hi+1/Hi+1 

and let 
A{u) = {U<H\r{Ui) = Ui}, 
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where u = ( u i , . . . , un) and the integers U{ satisfy 

0 < Ui < di = r(Hi/Hi+i) for each 1 < i < n. 

The vector u is called the type of the subgroup U. 
We have 

THEOREM 5. Suppose that for each U G A(u) 

r{9{U)nHi/9{U)nHi+1)>Vi 

and 

r{Up[H, U) fi Hi/Up[H, U] H Hi+1) > Wi. 

Then 

C?2 - U)2 

U2 - VÛ2 
V 

dn ~ Wn 

where 

x = (Ul -v1){d2 -u2) 

+ • • • + (Ml + • • • + ^n- l ~ (Vl + • • • + Vn-l))(dn ~ O , 

and 

denotes the number of s-dimensional subspaces of a vector space of dimension 
r over the field of q elements. 

When H is a quotient of a free group F by Fn we obtain estimates for V{ 
and Wi in terms of the Witt numbers, and some further delicate combinatorial 
estimates give us Theorem 3. 

The proof of Theorem 4 depends upon estimating the number of orbits of 
subspaces of Jn = Hn/Hn+i under the action of GL(d,p), using the Cauchy-
Probenius lemma which states that if a group acts on a set the number of 
orbits is equal to the average number of elements left fixed by an element 
of the group. We do this by obtaining an upper bound for the number of 
subspaces of Jn normalized by an element of GL(d,p). 

THEOREM 6. Let G = (g) be a cyclic group and V a vector space of 
dimension n over the field ofp elements on which G acts. Let m be the number 
of G-invariant subspaces ofV. If g does not act on V as scalar multiplication 
then 

l o g p r a < n 2 / 4 - n / 2 + 6. 

The number m is largest when g has order a power of p, and the theorem 
is proved by calculating m exactly in this case, by a method similar to that 
of Theorem 3. 

\A(n)\ < di 
M l 



82 URSULA MARTIN 

REFERENCES 

[BK] R. Bryant and L. Kovacs, Lie representations and groups of prime power order, 
J. London Math. Soc. 17 (1978), 415-421. 

[Gr] J. A. Green, The characters of the finite general linear groups, Trans. Amer. 
Math. Soc. 80 (1955), 402-477. 

[Ha] P. Hall, The algebra of partitions, Proc. Fourth Canadian Math. Congress (Banff, 
1957), 147-149. 

[Hi] G. Higman, Enumerating p-groups. I, Inequalities, Proc. London Math. Soc. (3) 
10 (1960), 24-30. 

[Mac] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathe­
matical Monographs, Oxford, 1979. 

[We] U. H. M. Webb, The occurrence of groups as automorphisms of nilpotent 
p-groups, Arch. Math. (Basel) 37 (1981), 481-498. 

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF MANCHESTER, MAN­
CHESTER M13 9PL, E N G L A N D 


