
RESEARCH ANNOUNCEMENTS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 15, Number 1, July 1986 
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In [1], Epstein, Sarnak, and I gave some general results concerning the zeros 
of an L-function attached to an even Maass wave form for T = PSL(2, Z). The 
main result was that such an L-function has many zeros on its critical line. 
In fact, we showed that the analogue of the Hardy-Littlewood theorem for 
the Riemann zeta function holds for these L-functions as well. In this note 
I announce the next step: the analogue of Selberg's theorem. That is, a 
positive proportion of the zeros lie on the critical line. This then significantly 
extends the class of Dirichlet series for which this is known. To date, this 
included only the classical Dirichlet L-series [8] including the Riemann zeta 
function [7], and the L-functions attached to holomorphic cusp forms of T 
[2, 4, 5]. (The proofs in the last case and the present case probably extend to 
cusp forms on congruence subgroups as well, but this has not been thoroughly 
verified.) Effectively then, this result applies to all cusp forms for GL(2). 

Let us formulate the theorem more explicitly. We begin with T acting on 
the upper half-plane M = {z € C:Im2 > 0} via linear fractional transfor­
mations. A Maass wave form is a T-automorphic function on M which is in 
L 2 ( r \ # ) and is simultaneously an eigenfunction of the Laplacian and all the 
Hecke operators. That is, ƒ satisfies 

(i) / | / ( * ) | 2 ^ < o o , 

(ü) A/ = (i+r2)/ , A = -yHd2
x + dl), 

(in) fM = f{z), -/er, zeH, 

(iv) Tn ƒ = a(n)f, n > 1. 
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Here Tn is the nth Hecke operator defined (for weight zero) by 

ad=n b=0 ^ ' 

We shall further assume that ƒ is even, i.e. 

(v) T_1f(z) = f(-z) = f(z). 

The case of odd ƒ (TLi ƒ = — ƒ) can be handled in a similar manner. 
There are two standard normalizations for ƒ; either the integral in (i) is 

one or the Fourier coefficients of ƒ are exactly the a(n). We assume the latter 
so that 

oo 

f(z) ~ s s ajr^y1^2Kjr(2nny) cos(27rn%). 
n = l 

Here K{r is the modified Bessel function of the third kind and r comes from 
the eigenvalue in (ii). 

We are concerned with the zeros of the function defined in a = Re s > 1 
by either 

oo 

LAS)=Y, « W " _ s = n (! - a^p~a+p"2s)-1 • 
n = l p 

As noted in [1], Lf(s) is entire and satisfies the functional equation 

0(«) = (2ir)->rr(s)Lf(s) = 0 ( 1 - s), 

where 
/»oo 

Tr(s) = J Kir{y)ya-ldy 

= 2Lr(i+i:)r(i iir). 
In the usual way, one deduces that Lf(s) has no zeros in a > 1, has trivial 
zeros at s = —In ± ir, n = 0 ,1,2, . . . , in G < 0 and has all other zeros in the 
strip 0 < a < 1. The Riemann hypothesis here is, of course, that all the zeros 
lie on the line a = 1/2. 

Letting 

N(T) = #{p = l3 + iy. 0<1<T, 0 < 0 < 1, ^ ( ^ = 0} 

and 

No(T) = UP = \ + il' 0 < l < T, Lf{p) = 0}, 

we have 
N(T) ~ -T logT , 

7T 

and from [1] for some positive constant A 

ATo(T) > AT. 

Here we announce the following. 
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THEOREM. For Lf(s) as above, there is a positive constant A such that 

N0{T)>AT\ogT. 

REMARK. The A depends on ƒ in some subtle but calculable way. In 
particular it depends on the eigenvalue \+r2. However, no attempt is made 
in the proof to give it a numerical value, or to show this dependence. 

The main outline of the proof is essentially the Selberg-Titchmarsh method 
as modified in [4, 5] for holomorphic forms. There are again some new 
difficulties. 

The first is that because the form ƒ has weight zero its Mellin transform 
£/(s) decays too rapidly on the critical line to allow for a sensitive detection 
of zeros. This is corrected in a seemingly ad-hoc manner by introducing a 
growth factor. One studies 

*ƒ(«) = * / ( « ) ( * - * ) 

which decays slightly less rapidly, but still has functional equation 

ef(S) = -ef(i-s), 
and critical line a = 1/2. This function actually arises naturally as the Mellin 
transform of the weight two form 2i(df/dz). 

The second main difficulty is essentially the same as in the holomorphic 
case, though the methods for overcoming it are quite different. We need to 
estimate sums of the type 

(1) EE«(n)aK), M) = l. 
N>1 n \ a / 

For the holomorphic case this was handled by analyzing the Dirichlet series 

E°° / \ fcn + N\ _3 a ( n ) a ( — ^ — j n 
n = l ^ ' 

and obtaining explicit estimates in iV, c, d, |s| in regions of nonabsolute con­
vergence (to the left of a = 1). See [3]. This relied heavily on two things. 
First, it required explicit computations involving the spectrum of the Lapla-
cian for congruence subgroups (to deal with the c-d dependence). Second, it 
uses the fact that the holomorphic forms of fixed weight can be represented 
as a sum of Poincaré series. 

Unfortunately, the latter technique is not available to us here. This diffi­
culty is overcome by some methods of Kuznetsov [6]. In that paper he deals 
with sums of the type in (1) with c = d= 1. Essentially, he replaces one of the 
coefficients a(n) by a sum of Kloosterman sums, uses some complicated inver­
sion formulas and "reduces" the sum in question to multifold sums of multiple 
integrals, with sums over the full spectrum of the Laplacian. Then careful es­
timates are required to show convergence in all the relevant parameters. In 
our case, we need to do essentially the same thing, but over congruence groups 
as well. The computations are technically complicated and quite long. 
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To study this problem in the most natural way, i.e., via (2), would require 
an estimate of the type 

/ \f(z)\2uK(z)^<e'^^KA\\uKU 
Jr\H V 

where uK is an arbitrary Maass wave form with eigenvalue \ -f K? , and A is 
some positive constant. At this time, this seems unattainable. 

The details of the proof of the theorem will appear elsewhere. 
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