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ON THE REAL SPECTRUM OF A RING 
AND ITS APPLICATION TO SEMIALGEBRAIC GEOMETRY 

BY EBERHARD BECKER 

Introduction. This paper is meant as an introduction and a guide to some 
recent developments in real algebraic geometry — more precisely, in semialge-
braic geometry. In real algebraic geometry one is concerned with the set of real 
points V(R) of a variety V defined over R. More generally, one may replace the 
field of real numbers R by any real closed field. Real algebraic geometry is 
clearly a part of general algebraic geometry and therefore there seems to be no 
need for special considerations, i.e. special notions, tools, etc. However, in 
dealing with the set of real points V(R) one encounters new phenomena which 
are not, or at least not easily, treatable by the general methods of algebraic 
geometry. To give examples, let V be an affine variety over R. Then V(R) can 
be regarded as an algebraic subset of some suitable RN, i.e., a subset defined by 
a finite set of polynomial equations Fx = 0 , . . . , Fr = 0 where Ft e 
R[ Xv..., XN]9 i = 1 , . . . , r. Consequently, V(R) carries the subspace topology 
inherited from R^. Even if V is irreducible it may happen that V(R) is not a 
connected topological space. Note that the corresponding set of complex 
points V(C) is always connected if V is irreducible. A typical example is 
provided by the elliptic curve E (Figure 1). 
In this example, is (R) has two components Q , C2, namely 

Ci = {(x,y)e R 2 b 2 = x(*2 - i), * < o}, 

C2 = { ( * , y ) ^ R 2 \ y 2 = x(x2 - l ) , x > 1}, 

We notice that the components are described by equalities and inequalities. 
This is quite generally true: V(R) always has a finite number of components 
each of which can be described by a finite number of polynomial equalities 
and inequalities, cf. [Lo, Wh]. 

Thus, one is naturally led to consider subsets of V(R) which can be 
described by finitely many polynomial equalities and inequalities: these are the 
so-called semialgebraic subsets of V(R). 

Semialgebraic subsets of V(R) or RN arise in the above-mentioned study of 
components. However, they are to be considered as the natural objects of study 
in real algebraic geometry not only because of this occurrence. Their definition 
takes account of the entire structure of the real numbers as an ordered field. 
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e 
FIGURE 1 

Since an algebraically closed field cannot be ordered there is no similar notion 
over the complex field. It is the order of R which enables one to define interior 
and exterior of figures, e.g. the interior of circles, polygons, etc. 

So one may say that semialgebraic sets are in some respects the genuine 
objects of real algebraic geometry. Consequently, real algebraic geometry 
should be extended to include the investigation of semialgebraic sets, i.e. it 
should be extended to semialgebraic geometry. A good account of currently 
studied problems in semialgebraic geometry can be found in the proceedings 
[CT-C-M-R, DR], in Brumfiel's book [Brul], in volume 14, number 4 of the 
Rocky Mountain Journal (1984), and in the book of Delfs and Knebusch 
[DK3]. 

As explained, semialgebraic geometry deals with problems which do not 
completely fit in classical algebraic geometry. This raises the question: Are 
there suitable notions and tools to treat these problems properly? It is the 
conviction of several mathematicians including the author, that the appropriate 
notion has been found. It is the new notion of the real spectrum of a ring 
which was introduced by M. Coste and M. F. Coste-Roy about 1979 [CC, CC l5 

CR]. In this concept ideas from the Zariski-spectrum of a ring are cleverly 
combined with concepts from the theory of formally real fields. That this latter 
theory naturally plays a role in real algebraic geometry was already obvious in 
Artin's solution of Hubert's 17th problem. Today it seems that the notion of 
the real spectrum of a ring may serve as a building block for a general 
semialgebraic geometry in the same way that the Zariski spectrum of a ring did 
for Grothendieck's formulation of algebraic geometry. In particular, it will 
certainly stimulate the further development of real commutative algebra. 

Let A denote any commutative ring with unit. Given a prime ideal t) its 
residue field quot(^4/t)) is denoted by k(t}). As^a set, the real spectrum of^, 
denoted by ^-Spec A, consists of all pairs (t), P) where t) e Spec^l and P is 
an order in Jc(t)). The topologyjs defined as follows: Given a e A, set 
D(a) = {(t) ,P) |ö £ Q, a + t) e P). Now by definition, these sets D(a\ 
a G A, constitute a subbasis for the topology. In this topology, ^-Specv4 turns 
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out to be a quasicompact space. Moreover, the assignment A •-> ^-Spec4 is, in 
a natural way, a contravariant functor from the category of commutative rings 
with unit into the category of topological spaces. 

As mentioned above, the notion of the real spectrum was introduced by 
Coste and Coste-Roy. They were led to it by topos-theoretic considerations. In 
this present paper, we will follow a different approach. We start off with 
Artin's solution of the 17th problem. Today, the result is usually derived from 
the Artin-Lang homomorphism theorem. In the first section the notion of the 
real spectrum is developed from an analysis of this theorem. One may even say 
that this approach provides a clearer understanding of the Artin-Lang theo­
rem. 

The second section is devoted to a general study of the real spectrum as a 
topological space and as a functor. In the third section we shall deal with 
certain applications to semialgebraic geometry. Here, we are concerned with an 
affine variety M defined over a real closed field R and semialgebraic subsets of 
M{R), the set of real points of M. The semialgebraic subsets of M(R) are in 
one-to-one correspondence with the constructible subsets of ât-$pecR[M]9 

where R[M] denotes the coordinate ring of M. A constructible set in &-SpecA 
is any subset which can be obtained from the D(a)'s, a e A, as above, by 
taking a finite number of intersections, unions and complements. That this 
correspondence is a bijection is essentially equivalent to the Artin-Lang 
theorem, and it is used in particular, following v. d. Dries, to prove the 
so-called finiteness theorem of semialgebraic geometry. This theorem states 
that any open semialgebraic set can be defined by a finite number of strict 
inequalities fx > 0,..., fs > 0 where ƒ) e jR[M]. Bröcker's recent results on the 
number of the inequalities needed are explained. 

In the last section, we shall discuss the use of the real spectrum of a ring for 
a possible foundation of an "abstract" semialgebraic geometry. The main part 
of this section is concerned with the construction of a certain sheaf on any 
constructible subset X in the real spectrum of a ring. This sheaf is called the 
sheaf of abstract semialgebraic functions on X and was independently intro­
duced by G. Brumfiel and N. Schwartz. X together with this sheaf (or possibly 
another, cf. [R]) may serve as the building block of an abstract semialgebraic 
geometry. 

There are other introductions to the theory of the real spectrum, cf. [CCI, 
L2, Kn]. They are all highly recommended. The reader will notice that different 
points of view are taken in these papers, and different notations are used. The 
notation &-SpecA, used in this paper, is chosen to reflect the fact that one may 
understand the theory of the real spectrum as a theory of ring homomorphisms 
into real closed fields. In a corresponding manner the Zariski-spectrum Speĉ 4 
is related to homomorphisms into algebraically closed fields. Generalizing 
these two examples, one may specify a class Jf of fields and consider only 
homomorphisms from a ring A into fields belonging to Jf. This would then 
lead to a J^spectrum of A, naturally denoted by J^SpecA In the case of the 
real spectrum, <% means the class of real closed fields. A notation like 
J^Spec4 seems flexible enough to cover further examples. At present, it is 
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already clear that one has to study the formally p-adic spectrum of a ring in 
order to globalize the results of [PR], cf. [BS]. 

The forthcoming book of Bochnak, Coste and Roy will present semialge-
braic geometry in great detail. The author hopes that this present paper will 
stimulate interest in semialgebraic geometry and that the reader will pass on to 
this comprehensive book. 

1. From the solution of Hubert's 17th problem to the real spectrum. In this 
section we first recall the solution of Hubert's 17th problem which is based on 
the Artin-Lang homomorphism theorem. This latter theorem provides, in fact, 
more than the solution of this famous problem (which is, of course, already 
important enough). Indeed, it leads directly to defining the real spectrum, 
^-Spec^4, of a ring A. Using this notion, a better understanding of the 
Artin-Lang homomorphism theorem can be obtained. 

We will not be concerned with the 17th problem in its full generality, nor in 
its original form; see the paper of McKenna [Mc] for a comprehensive 
discussion. We fix a real closed field R and we will deal with the following 
version: 

Let the polynomial feR[Xl9...9 Xn] be positive on Rn
9 i.e. 

f(x) > 0 for every x e Rn. Is ƒ then a sum of squares of 
rational functions in R(Xl9..., Xn)1 

As is well known, E. Artin answered this question in the affirmative [A] (in fact 
he dealt with a slightly different situation). He first studied sums of squares in 
arbitrary fields K. Set LK2 = {L[x2 \ r e N, xl9 . \ . , xr e K}. If chartf = 2 
then LK2 = K2\ if charü: # 2 but -1 e ZK2 then LK2 = K because of the 
identity a = ((a + l ) /2 ) 2 + (-l)((a - l ) /2)2 . Hence, the fields with the prop­
erty - 1 ^ E A ' 2 are left. These fields are called formally real and for those 
fields Artin proved [A] the 

(1.1) PROPOSITION. £ K 2 = HP where P ranges over all orders ofK. 

Recall that an order P of K is any subset of K satisfying P + P c P, 
? P c ? , ? u - P = A , ? n - ? = { 0 } , in other words, the orders are just the 
cones of positivity of the total order relations on K. 

The proof of (1.2) is easy and can be found, e.g., in [W, P, LI]. 
In the next step of his proof Artin had to show that a polynomial ƒ, positive 

on Rn
9 lies in every order P of the rational function field R(Xl9...9 Xn)\ (1.1) 

would then give the desired conclusion ƒ e £ R(Xl9..., Xn)
2. Today, this is 

often derived from the so-called Artin-Lang homomorphism theorem [La, p. 
279, Theorem 5], for affine jR-algebras which are, by definition, nothing but 
the finitely generated commutative .R-algebras. We will proceed in this manner. 

(1.2) THEOREM. Let A be an affine R-algebra which is a domain and denote its 
quotient field by L. If L is formally real (or, equivalently, if the unique order of 
R can be extended to L) then there is an R-algebra homomorphism <p: A -> R. 

In order to apply this result we start with the function field L0 — 
jR( Xl9..., Xn) and ƒ G A0 = R[ Xl9..., Xn] which is assumed not to be a sum 
of squares in L0. By (1.1), we find an order P with ƒ £ P, hence -ƒ G P. Now 
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consider the function field L = L0(J^f) which is the quotient field of A = 
A0[l/f, yf-f ]. It is also formally real since the assumption -1 e EL2 , say 
- 1 = L(a, + b?Pf )2, a,., 6, e L0, would imply (E6 2 ) / = 1 + Laf and finally 
ƒ e £ L Q C P. By (1.1) we therefore get a homomorphism q>: A ^> R. We have 
(p(ƒ) # 0 since ƒ is a unit of A. We then obtain <p(-/) = <p(yfj)2 > 0, hence 
<p(/) = /(<p(Ar

1),...,<p(^w)) < 0, which means that ƒ is strictly negative at 
the point (<p(A\),..., <p(Xn)) e P". Thus we have solved, following E. Artin, 
the 17th problem of Hilbert. 

It was the application of (1.2) to the larger function field L and the algebra 
A instead of P (X l 9 . . . , Xn) and R[Xl9...9Xn] that brought the contradiction. 
This flexibility with respect to the variation of the "parameters" L and A 
allows a version of the Artin-Lang homomorphism theorem, which im­
mediately points to a description of orderings by ultrafilters. To this end, we 
introduce a few algebraic-geometric notions: Let A be an affine P-algebra, for 
simplicity assume A = R[XV..., Xn]/a. We attach to A the real affine 
algebraic set M(R) = {x e Rn \ F(x) = 0 for all F G a }. The algebra A has a 
natural representation as a ring of P-valued functions on M(R): if ƒ = F + a, 
F G R[Xl9..., Xn] and x G M(P), then f(x) := F(x). We have the natural 
map 

M(R) -> Spec.4, 

It is easily verified that this map is injective, and the image is just the set of 
maximal ideals with R as their residue field. Consequently, M(R) is referred 
to as the set of real points of the affine scheme M = Spec A. 

A point t) G Spec A, i.e. a prime ideal, is called regular if the local ring A^ is 
a regular local ring [K]. Accordingly x G M(R) is called regular if its local ring 
Ox := Amx is regular. The existence of regular points is crucial, as we shall see. 
We set M(i*) reg:= {x e M(R)\x regular}. 

EXAMPLES, (i) A=X{X, Y]/(X2 + Y2 + 1), M(R) = 0 . 
(ii) ^ = R[X, Y]/(X2 + 7 2) , M(R) = {(0,0)}, M(R)reg = 0 . 
(iii) A = R [ * , 7 ] / ( 7 2 - * 3 ) , M(R)reg = M(R)\{(0,0)}, M(R): 

The following variant of the Artin-Lang homomorphism theorem was proved 
in [B, (1.3)]. The statement seems much stronger than that of (1.2). But in fact, 
it is a consequence of (1.2) and, in turn, implies the previous formulation (1.2). 
To see this take n = 1, fx = 1. In comparing the formulation of the next 
theorem with that of loc. cit. (1.3) one should note that M(R) -> Hom^(^4, P), 
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x •-> {ƒ •-> ƒ(*)} is a bijection, where H o m ^ ^ , P) is the set of all unitary 
P-algebra homomorphisms from A to R. 

(1.3) THEOREM. Let L be the formally real quotient field of the affine R-algebra 
A and let f v . . . , fn e A \ {0} be given. Then the following statements are 
equivalent: 

(i) There exists a regular real point x e M(R) withfx{x) > 0 , . . . , fn(x) > 0. 
(ii) There is an order P of L with /1? . . . ,ƒ„ e P. 

The equivalence of the two statements (i) and (ii) indicates a close link 
between the two notions of positivity for a function ƒ e A, namely being 
abstractly positive, i.e. lying in some order, and being positive as a function at 
some point. It is this connection we wish to pursue. For this purpose, we need 
further notions. The real closed field R is clearly a topological field. We 
therefore have a topology on Rn and consequently the subspaçe topology on 
M(R). This topology is referred to as the strong topology. A neighborhood 
basis for a point x e M(R) is given by the balls P(x, e) n M(P), e e P , 
e > 0, where y e P(x, e) iff d(x, y)2 = EJI*, - yt\

2 < e2. 
We further have the Zariski topology on Spec^l [Bo2]. A basis for this 

topology is given by the sets £/(ƒ) = {t) e Spec A \ f £ t)}; the closed sets are 
given by V(a) = (t) e SpecA\a c t)}, a an ideal of A. Via the embedding 
M(R)<-* Spec A we get the subspace Zariski topology on M(R) with a basis 
given by {x G M ( P ) | f(x) # 0 } , f e A. This second topology is of course 
coarser than the strong topology on M(R). In general it is strictly coarser, as 
can be seen from the example A = R[X], M(R) = P , where the nonempty 
Zariski-open sets are just the complements of the finite sets. 

The real spectrum ^?-Specy4 will remedy this defect. We will have mappings 

M(R) £ j * Spec4 

V / Î 
^-Spec4 

such that the subspace topology on M(R) inherited from ^-Spec^4 is just the 
strong topology on M(R). 

For the moment, however, we are dealing with the Zariski topology on 
Spec A and the natural embedding MtR)'-* Spec A. We will need to describe 
the closure of a set S c M(R) in Spec A. 

Given t) e Specv4 we denote by k(t)) the residue field on ty, i.e. the quotient 
field of A/t). We have k(t)) - A^/\)A^. Now let 5 c M ( P ) be given, its 
closure in the Zariski topology of Spec A is denoted by Sz. It is obtained as 
follows: if S = 0 then Sz = 0 , if S * 0 then I(S):= f l ^ s t r ^ , is a radical 
ideal in the noetherian ring A, hence / ( 5 ) = t)x O ••• nt)r where the t), are 
all the minimal prime ideals of I(S). Note that this intersection is irredundant. 

(1.4) PROPOSITION. SZ = V(t)x) U • • • u V(t)r). Moreover, k(\)t) is formally 
real for i = 1 , . . . , r. 

PROOF. By the general theory of Spec,4 we have Sz = V(I(S)) = UJ^t) , ) . 
To show that all k{t)t) are formally real we have to prove: if Ef/)2 e t). then 
A, . . . , ƒ , e Q,.. For simplicity, set Ï = 1. Pick g G (t}2 n • • • t)r)\t)i*, then 
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£ï(«//)2 G *h n * * * n t^r = /( 5 ' ) - T h i s m e a n s £(&//)(*)2 = 0 for all x e S, 
hence g^ e 7(5) for all j's. Since g € t^ we get fj e t)x for j = 1 , . . . , 5. 

S is called Zariski-dense if Sz = Spec A In case Nil(yl) = 0 we have 
(1.5) S is Zariski-dense if and only if : ƒ = 0 on S implies ƒ = 0. 

The basic result in this regard is the following one. 

(1.6) PROPOSITION. Assume that A is an integral domain. Then every subset 
S c M(R) which is open in the strong topology and contains a regular point is 
Zariski-dense. 

This was first proved by Dubois and Efroymson [DE, p. 134, Theorem 4.9]. 
The proof as given in [B, p. 8, (1.5)] only uses the Artin-Lang homomorphism 
theorem and is valid over an arbitrary real closed field. 

Now we are almost prepared to state and prove the first part of the 
ultrafilter theorem. We only need the notion of a semialgebraic set in M(R). 
Given arbitrary finitely many elements ƒ, gv..., gr e A we set 

{ / = 0 , g l > 0 , . . . , g r > 0 } 

:= {x e M(R)\f(x) = 0, gi(x) > 0, i = l , . . . , r } . 

Then, by definition, a semialgebraic set is a finite union of sets of the type 
{ ƒ = 0, gx > 0 , . . . , gr > 0}. Intuitively, a set is semialgebraic (for short: s.a.) if 
it can be described by a finite number of equalities and inequalities. One might 
wonder why only one equation occurs in {ƒ = 0,gx > 0 , . . . , gr > 0}. The 
reason is that the statement fx = 0 , . . . , fs = 0 is equivalent to H[ f2 = 0. Note 
that there is no such way to combine several inequalities. Examples for this are 
easily provided in the case of A = R[M]. The semialgebraic subsets of M(R) 
form a lattice y(M(R)) closed even with respect to taking the complement. It 
is the lattice, with complement, which is generated by the sets {ƒ> 0}, ƒ e A. 
As in any lattice there are filters in y(M(jR)), and the maximal filters are called 
ultrafilters. Here, slightly generalizing the definition in [Bi, p. 25], a filter in a 
lattice ££ is any dual ideal ,ƒ =£ £?. 

We now can state the ultrafilter theorem for orders of a function field. It is 
due to Brumfiel [Brul, p. 232 ff.]. Let L be a function field over R9 which is 
the quotient field of an affine ZÊ-algebra A. Given an order P of L we assign to 
P the filter ^(P) in y(M(R)) which is generated (as a filter) by the 
semialgebraic subsets ( fx > 0 , . . . , fr > 0} of M(R\ where r e N , f G A, 
f e P \ {0} for / = 1 , . . . , r. Conversely, given any filter F in y(M(R)) set 

0>(F) = j ƒ G L | fg2 G A and { fg2 > 0} e F for some g^A \ { 0 } } . 

(1.7) ULTRAFILTER THEOREM FOR ORDERS. The mapping P •-> J**(P) jS a 

bijection, with inverse F -> &(F), between the set of orders of L and the set of 
ultrafilters in y(M(R)) which contain only Zariski-dense semialgebraic subsets of 
M(R). 

PROOF. Let the order P be given. The sets {fx > 0 , . . . , fr > 0} are clearly 
open in the strong topology. Hence, by (1.3) and (1.6) &{P) contains only 
Zariski-dense sets. In order to show that J ^ ( JP ) is an ultrafilter we have to 
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prove that any semialgebraic subset Tot M(R) satisfies T G J^(P) or M(R)\ 
T =: Tc G ̂ (P). Suppose Tc <£ &(P). We want to show T G J^(P). TO this 
end we may assume that T is of the form T — { ƒ = 0, gx > 0 , . . . , gr > 0}. If 
ƒ # 0 we would get ƒ 2 G ,4 O P, { ƒ 2 > 0} c Tc, thus P c G J*"(P), which is a 
contradiction. Therefore ƒ = 0, and from Tc £ ^(P) we derive gv...,gr^ P 
yielding F G ^ ( P ) . 

Conversely let F be an ultrafilter of Zariski-dense semialgebraic subsets of 
M(R). If fl9 f2 G P := <2*(F), and with ft e ^ \ {0}, fg2 G ,4, { fg2 > 0} G 
J*\ then 

U*,2>0}c{/,(glg2)2>0} 
and 

{ te l > 0} n {/2g2
2 > 0} c {/(glg2)2 > o}, 

where ƒ denotes /x 4- f2 or ^ / j . This shows { f(gig2)
2 > 0} e & and P + P 

c P, P P c P . If fGPn-P then {/g2 > 0} G F, {-fh2 > 0} <= F, so 
{f(gh)2 = 0} G p. By assumption, P contains only Zariski-dense subsets, 
which implies, in view of (1.5), that f(gh)2 = 0 and ƒ = 0. To show P U - P 
= L take / G L , ƒ # 0 and choose g G V4 \ {0} with fg2 G ^4. Because of 
M(R) = {/g2 > 0} Ù { fg2 = 0} Ù {-fg2 > 0} G P we see that at least one of 
these three semialgebraic subsets must lie in P. By the above argument, 
{/g2 = 0 } G F i s impossible, from which we get ƒ G P U - P . 

It remains to show that the mappings P •-» ^ ( P ) , F »-» ^ ( P ) are inverse to 
each other. If P is given then, for any ƒ G 4̂ n P, we have { ƒ > 0} G J^(P). 
Thus AnPcz &>(&{P)\ showing P = ^ (^" (P) ) . If P and f <= 0>(F) n ^ 
are given then, as above, {/g2 > 0} G F implies ƒ = 0 or { fg2 > 0} G F. As 
{ /g 2 > 0} c { ƒ > 0}, we get {ƒ > 0} G F. Hence &(0>(F)) c F, yielding 
J£-(^(F)) = F. 

The ultrafilters J^(P) consist of subsets of the topological space M(R) with 
the strong topology. It is rather natural to look at limit points of those filters. 
These filters J^(P) are not filters with respect to the power set of M(R), they 
are, following [Bol], a filter basis or prefilters. Nevertheless, we have the 
notion of a limit point in the following sense: given any filter basis^ F in a 
topological space X we call x G X a limit point of F if x G DSGFS. In our 
situation we first see that a filter J*"(P) has at most one limit point. Assume on 
the contrary that x, y G Rn are distinct limit points and (distance)2 = 
d(x, y)2 = ZîiXj - yi)2 = e. Setting f(z) = \e - d(z, x)2 for z G M(P), we 
have constructed ƒ G A with ƒ(*) > 0 > f(y). If ƒ G P then { ƒ > 0} G J£"(P) 
and, using the assumption f(y)>0. If ƒ £ P one will equally derive a 
contradiction, this time f(x) < 0. 

It may happen that ^ ( P ) has no limit point on M(P) at all. In case 
lim &(P) = x G M(P) exists we call x the cewter of P: JC = c(P). 

To describe the center points we will make use of certain valuation rings. 
Because of later applications we will introduce them in a more general way 
than really needed here. Assume L is any ordered field and B is a local 
subring of L whose maximal ideal m is convex in B with respect to the order 
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of L. By definition this means that 0 < Ö < i , Û Ê 5, è G m implies a e m. 
Now let B be the convex closure of B in L, i.e. 

Ê = { a e L I |a| < a for some a G j 5 } . 

We further set 

m = { a G LI |<z| < 1/(1 4- a) for all a e P, a > 0}. 

In order to formulate the next result we follow the convention that, given two 
local rings Bl9 B2 in a field, Bx is said to be dominated by B2 (or: B2 

dominates Bx) if Bx c B2 and ml = Px n m2 where m, is the maximal ideal 
of Bt. In this case we write Bx< B2. 

(1.8) PROPOSITION. Assume the above hypothesis, then 
(i) B is a valuation ring with maximal ideal rît, 
(ii) B is dominated by P, 
(iii) the residue field B/xh is archimedean over P /m under the induced order 

which is defined as follows: e 4- rît > 0 iff e > 0. 

PROOF. That P is a ring is easily seen. Let a £ Ê. Then \a\ > a for all 
a G P, a > 0. Note that 1 4- a is a unit of 5 if a e P, a > 0 since 0 < 1 < 
1 4- a and m is convex. Hence, we get \a\ > 1 4- a and \a~l\ < 1/(1 4- a), in 
particular a'1 e P. Thus 2? is a valuation ring, the maximal ideal m of which 
is contained in the set {a e L | \a\ < 1/(1 4- a) for all a e P, a > 0}, as just 
proved. Conversely, if \a\ < 1/(1 4- a) for all a e 2?, a > 0, then |a_1 | > 1 4- a 
for all a e P, a > 0, which shows a~l £ 5, hence a e rît. From the convexity 
of m and the description of rît we get that P dominates B. The set 
(e 4- mIe e_P, e > 0} =:P is closed under addition and multiplication and we 
have P U - P = P/rît. If -1 e P then 1 4- e e rît for some e e 2?, e > 0. But 
1 4- e is a unit, as seen above, which is a contradiction. Thus P is an order of 
P/rît. From the definition of 5 one gets the remaining statement in (iii). 

Before applying the result (1.8) we would like to point out that it constitutes 
the essential part of Brumfiel's place extension theorem [Brul, p. 152, (7.7.4)]. 

We now return to the description of the center points. We take as L our 
function field over the real closed field R together with the given order P and 
as B the subfield R. In this case R is usually denoted by A(P, R) and (0) by 
7 (P ,P ) , see [LI, PC]. 

(1.9) PROPOSITION. Let an order P of L and x e M(R) be given. Then the 
following statements are equivalent: 

(i) x is the center of P. 
(ii) Ox is dominated by A(P, R). 

PROOF, (i) =» (ii) Consider ƒ e A, assume ƒ(*) > 0. If ƒ £ P then {-ƒ > 0} 
e &(P\ x G { ƒ < 0}, hence f(x) < 0. We thus have that f(x) > 0 implies 

ƒ e P. Now let ƒ be any element of A. Set e = 1 4- | / (JC) | ; then (e ± ƒ )(x) > 0, 
consequently e ± ƒ e P, ƒ e A(P9 P), and A c A(P, R). If f(x) = 0 we get 
(T? ± ƒ )(x) > 0, T) ± ƒ e P for all TJ G P, TJ > 0, hence mx c / ( P , R) and 
0 x ^ ( P , P ) . 

(ii) => (i) The distance function D: M(R) -» P , y •-» d(x, j ; ) 2 , lies in m,, 
hence e + D e P for all e > 0. This means that the open ball B(x,\/e) in 
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M(i*) lies in &(P) = F, therefore B(x, \/ë) n S * 0 for S e F, e > 0. Thus 
je G S. 

In the next theorem, the centers of orders are related to regular points. The 
result was first obtained by Dubois [Du, p. 62, Theorem 3]. 

(1.10) THEOREM. The set of centers of orders of L is the closure of M(P) r e g 

with respect to the strong topology. 

PROOF (Suggested by L. Bröcker). Let x = c(P). Take e E i î , e > 0. The 
function f(y) := e - d(x, y)2 is not zero. If ƒ £ P then S = {y\d(xy y)2 > 
e] e J^(P) , but x £ S. Hence ƒ e P and by (1.3) we find a regular point y 
with J(x, >>)2 < e> i-e- J G B(x,]fe). This holds for all e, which means x 
e M(Z£)reg. Conversely, if x e Af(P)reg then the open balls B(x, e) are open 
semialgebraic sets which contain a regular point, for e > 0. Hence, they are 
Zariski-dense by (1.6). Consider the filter P0 of semialgebraic subsets of M(R) 
generated by the open balls B(x, e). F0 only contains Zariski-dense subsets. Set 
P0 = &(F0) as in 1.7. As in 1.7 we show P0 + P0 c P0, P0P0 c P0, P0 n -P 0 

= {0}, L2 c P0. It is known, see e.g. [LI], that P0 c P for some order P. One 
sees J?(x, e) e J^(P) for all e, hence x = lim J^(P). 

The ultrafilter theorem and the notion of a center of an order allow us to 
interpret orders "geometrically" (at least in certain cases). 

EXAMPLES. (1) L = R(X), A = R[X] then M(R) = R. The semialgebraic 
subsets are finite unions of singletons and open intervals. An ultrafilter F 
therefore converges to a e R or to -oo or to 4- oo. Let lim F = a. Consider the 
function X - a. Either {X - a > 0} <= For {X - a < 0} e F. 

Let P = ^ ( P ) ; P is determined by P n R[X]. In the first case { X - a > 
0} e F, Le. I - Û G P , and / G R [ I ] is in P iff ƒ ^ 0 on some interval 
[a, a 4- e], e > 0. We symbolize this order by 

i/////// 

In the other case we have ƒ e P iff ƒ > 0 on some interval [a - e, a], e > 0; of 
course this is symbolized by 

///////L 

In case lim F = + oo, P G R[A"] is given as the set of ƒ 's which are positive 
for large values, i.e. have the highest coefficient positive. If l imp = -oo then 
ƒ e R[X] n &(P) iff (-l)nan > 0 where « = deg ƒ, an the highest coefficient. 

(2) L = R( X, Y), ,4 = R[X, 7] , M(R) = R2. In this case there is no such 
simple description as in (1). Consider for example the semialgebraic partition 
of R2 by transversal lines through x (Figure 2). There are at least four 
ultrafilters Ft with St e Ft; this means there are orderings Pt such that, if ƒ > 0 
on Si9 then ƒ e P.. If we further partition Sx into 7\, r2, T3 as in Figure 3, then 
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£i> Si a r c s o n algebraic 
curves 

we obtain the existence of three further orderings. Thus continuing this process 
leads to new orderings at each step. If we want x to be the center, then x must 
lie in all the closures of these semialgebraic sets. In particular, we obtain an 
ordering P with center x by fixing h and setting / 6 R [ I J ] n ? iff ƒ is 
nonnegative on some segment 

on the left upper side of h, with corner x and between h and some algebraic 
curves gv g2 with gx passing through x. This order is symbolized by 

. / / / / / / 

Of course, the line h may be replaced by any arc of an algebraic curve. 
In contrast to the first example, we now do not have any nice interpretation 

for possible limits of those ultrafilters which do not have a Umit in M(R). The 
situation is even worse if we are dealing with arbitrary real closed fields. In 
that case, even ultrafilters containing a bounded set need not converge, since 
Rn is not locally compact for R # R. However, as we will see in the next 
section, the real spectrum of A provides, in all cases, a space in which the 
limits of all ultrafilters &(P) naturally lie. 

So far, we have only studied ultrafilters of Zariski-dense semialgebraic 
subsets of M(R). But there is no reason not to consider all ultrafilters in 
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y(M(R)). In the course of this study we will be concerned with subschemes 
N = Specv4/t), where t) is any prime ideal of A. There is the natural 
embedding N = SpecA/t) -» M = Specif, g *-> 7r_1(ö), m being the natural 
epimorphism A -* A/X), and the Zariski topology on Spec A induces the 
Zariski topology on Spec4/t). Considering the real points in N and M we 
have A T ( F ) = { X G M ( * ) | A ( * ) = ••• = / r (x ) = 0) where U - ( A , . . . , / r ) . 
Thus, N(F) is considered as an algebraic subset of M(R). Under this 
identification we identify ƒ |N(jR) with ƒ + t) for any f e A. If t) is assumed to 
have a formally real residue field k(t)) = quot(yl/t)), then by (1.3) and (1.6) 
N(R)reg is Zariski-dense in N. 

EXAMPLE. A = R[XyY]9 t) = (Y2 - X(X2 - 1)). Then M(R) = R2, N(R) 
= {(x,y)<=R2\y2 = x(x2-l)}. 

Now let F be any ultrafilter in y(M(R)). We set t)(F) := { ƒ e 4 | { ƒ = 0} 
G F } . 

Claim: t) = t)(F) is a prime ideal of A. That t) is an ideal is easily seen. 
Suppose fg G ç, i.e. ( fg = 0} = { ƒ = 0} U {g = 0} G F. Since F is an ultra-
filter this implies ƒ G t) or g G ç. Thus we have the subscheme N = Spec^4/^. 
On # ( # ) we consider the filter F ^ ^ = {S G y(JV(JR))|S e F } =:F0. At 
least # ( F ) G F0 since iV(F) = { A = 0} n • • • n { / r = 0} if Q = ( A , . . . , A). 
We claim that F0 is an ultrafilter of semialgebraic subsets of N(R) which are 
Zariski-dense in N. To see that F0 is an ultrafilter in y(N(R)) consider 
T G y(N(R)) satisfying T £ F0. Since F is an ultrafilter we get M(R)\T G F. 
Using the fact JV(F) G F one derives N(R)\T = # ( F ) n ( M ( F ) \ F ) G F0 

which was to be shown. To see that every set S in F0 is Zariski-dense in N we 
have to show that, given ƒ G ^4, the statement ƒ = 0 on S implies ƒ G Ç. NOW, 
5 c { ƒ = 0}, hence { ƒ = 0} G F and ƒ G g. 

According to the ultrafilter theorem for orders, (1.7), F0 induces an order^n 
k(t}). Hence^we assign to every ultrafilter F in y(M(R)) a pair (t),F), 
t) G Spec^4, P an order on fc(t)). This assignment F •-> (t), F) is injective since 
F= IS & y(M(R))\S n W(JR) G F0} and JV(F) and F0 are determined by Q 
and P. 

Conversely, given a pair (t), F), t) G Specv4, F an order on fc(t)), we will 
attach to it an ultrafilter F in y(M(R)). The prime ideal J) provides a 
subscheme AT = Spec>l/k) and N(R). By (1.7), the order F induces an 
ultrafilter F0 in y(N(R)). Set F:= {5 G Y ( M ( F ) ) | S n JV(F) G F0}. Noting 
F0 c F one easily checks that F is an ultrafilter in y(M(R)) and that the given 
pair (k), F) is assigned to F by the above construction. 

We therefore have that F -» (t),F) gives a bijection between the set of 
ultrafilters in y(M(JR)) and the set of pairs (t), F) where t) G Specv4, F an 
order of k ( t) ). 

Let us now introduce some notations. By M(R) we denote the set of all 
ultrafilters in y(M(R)). M(R) is naturally embedded in M ( F ) by attachingto 
x G M(R) the principal ultrafilter containing (JC}. We impose on M(R) a 
topology by taking as a subbasis the sets S = {F G M ( F ) | S G F } where 
S = { ƒ > 0} c M(F), ƒ G ^ . In this topology we regard M ( F ) as the ultra-
filter completion of M(F), cf. [Br, p. 252]. 
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On the other hand we define the real spectrum of an arbitrary ring A by 
setting 

gt-SpecA = {(t) ,P) |t) e Spec4, P an order of k(t>)}. 

In the geometric situation, we have, as proved above, a bijection M(R) -» @-
Spec>4, F -» (t), P). It is readily checked that under this bijection the open set 
S is sent to the set D( f ) := {(*), P) \ ƒ e A, ƒ + t) G P \ 0 } . Also, for arbitrary 
rings, we take the D(f)'s as a subbasis and thus impose a topology on 
^-SpecA 

Summarizing all facts, we have now found the full ultrafilter theorem which 
first appeared in print in Bröcker's paper [Br2]. 

(1.11) ULTRAFILTER THEOREM. The ultrafilter completion ofM(R) is naturally 
homeomorphic to ^-Spec^4. 

The topological space ^-Spec^4 casts new light on the Artin-Lang Theorem 
(1.3) which already indicated a close link between real regular points and 
orders of the function field. It is the space ^-Specv4 which provides a 
topological description of this relation, as we will see in a moment. 

We started with an integral affine algebra A and then passed to its 
associated affine variety M = Spec A It is now more appropriate to reverse the 
order and call A the coordinate ring R[M] of M; in this set-up, the quotient 
field L of A is then the function field R(M) of M. 

We mentioned the embedding 

%: M(R) -* Speci*[M], x -» xnx. 

It clearly factors through the embedding 

<b: M(R)^@-SpecR[M]9 x >-> (mx,R
2). 

Whereas $ 0 did not induce the strong topology on M(R), we now have, in the 
case of $ : 

(1.12) PROPOSITION. The subspace topology on M(R) inherited from 0t-
Spec R[M] is just the strong topology. 

PROOF. The sets $-\D(f)) = {x e M(R)\f(x) > 0} form a subbasis oi 
the strong topology on M(R\ f e A. 

We have ^-SpecR(M) = {P\P order of R(M)} and the canonical embed 
ding 

ifr. ^ -Spec£(M)-> <#-Speci*[M], P -> ({0},P) . 

Putting the mappings 0, \p together we obtain the diagram: 

M( J R) c ^^-Speci?[Af] 

@-SpecR(M) 
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This makes visible how the space ^-SpecjR[M ] combines the two ingredients 
of the Artin-Lang theorem: the points and the orders. Looking at the images of 
$ and \p we obtain what may be called the ultimate form of the Artin-Lang 
theorem (1.3). To simplify the notation we regard M(R) as a subspace of 
^-Spec#[M] in view of (1.12). Furthermore we set D(fv...9fn) = D(fx) 
n • • • n/)(ƒ„) in @-Spcc R[M]. 

(1.13) ARTIN - LANG HOMOMORPHISM THEOREM, REVISITED. 

(i) M(R) is dense in ^-SpecR[M]; 
(ii) M(R) n Inn// = M(R)reg. 

REMARK. In (ii), M(R)reg is the closure relative to M(R). 
PROOF, (i) Given (t), P) e D( f x , . . . , fm) we have to find^ x e M(R) with 

fi(x) > 0, i = 1 , . . . , m. From the hypothesis, we get /. e P in /c(t)), where 
f = ft + t). By (1.3), there is an x e N(R) c M(#) , iV = Spec4/t), with 

(ii) Take x e M(# ) Pi Inn// and pick e e R, e >J). Set /6 = e - E(JÇ - x,.)2 

where x = (xl9 . . . , x „ ) e M(fl) c R", Xt = ^ + a, R[M] = 
^[A r

1 , . . . ,Xw ] /a . Then x e £>(ƒ,), hence there is an order of R(M) with 
fe e P. By (1.3) we find a regular point y with /e(>>) > 0, i.e. y e J5(x, v^ë). 
Hence, x e M(R) . Conversely, if x G M(i*)reg, then given fv...,fr with 
JC e Z>(/x , . . . , / r ) , i.e. f(x) > 0, then, by assumption, there is a regular point 
y with ƒ( >0 > 0, i = 1 , . . . , r. By (1.3), we find an order P with fl9...9freP9 

Le. />( / ! , . . . ,ƒ , ) n l m * # 0 . 

2. The topological space ^-SpecA We start this section by presenting an 
equivalent definition of the real spectrum of_an arbitrary ring A. Given 
(t), P) e ^-Spec^4 we set a := {a e ^4|a H I E P ) . Clearly, a satisfies: 

a + a c a, a a C a , a Ü - a = ^4, a n - a is a prime ideal. 

(In this case a Pi - a = t).) In the general case, every subset a of A satisfying 
the above conditions is called a prime ordering of A or just an ordering if it is 
tacitly understood that a n - a has to be a prime ideal. Given a prime ordering 
a, the prime ideal t) ;= a n - a is called the support of a, t) = supp(a). (In the 
geometric situation of the last section the support t) describes the subvariety 
on which the ultrafilter actually Hes.) We have the induced prime ordering 
â = {a + t)\a & a] on A/t) with supp(â) = {0}. Therefore, â uniquely ex­
tends to an order of k{\)) = quot(^4/ty), again denoted by â. 

We thus have a bijection between ^-Specv4 and the set of all prime 
orderings of A. In the sequel, we will take this second point of view and will 
work with prime orderings. Keep in mind that a gives rise to the pair 
(supp(a),â). So, from now on, we write 

^-Spec^l = { a | a prime ordering of A } . 

We shall also write "orderings" instead of "prime orderings". 
An element ƒ e A can be viewed as a "function" on ^-SpecA We set 

ƒ ( « ) : = ƒ + Q e fc(u), t) = supp(a). 
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By ƒ(«) > 0 we mean f (a) # 0, f (a) G â, and by D( ƒ ) := { ƒ > 0} we denote 
( a G ^-Spec/11 f (a) > 0}. Note that this present definition is in accordance 
with the one given before (1.11) if we pass to our new definition of ^-SpecA 
Accordingly, we set { ƒ = 0, gx > 0 , . . . , gr > 0} = { a G ̂ -Spec^41 ƒ (a) = 0, 
gx(a) > 0 , . . . , g r(«) > 0}. As in the geometric case of the last section, we 
introduce the lattice with complement which is generated by the sets { ƒ > 0}, 
ƒ G A. This time the sets obtained are called the constructible subsets of 
^-SpecA A set is constructible if and only if it is a finite union of sets of the 
t v P e { ƒ = 0, gi > 0 , . . . , gr > 0}. This is readily checked using the fact {ƒ = 
0 } n { g = 0} = {/2 + g2 = 0}. 

The sets D( ƒ ) where ƒ G A constitute by definition a subbasis of a topology 
on ^-Spec^4. This topology was already defined before (1.11) and is referred 
to as the topology of âë-SpecA. A basis is given by the sets D(fv...9fr) = 
C\[D(fi\ r G N, f v . . . , fr G A. We will also deal with a certain finer topology 
on ^-SpecA This second one is called the Tychonoff topology of ^-SpecA It is 
an auxiliary topology of great importance, at least in proofs. 

To introduce the Tychonoff topology, we first note that for any given 
a , j 8 e * S p e c 4 

(2.1) a\(-a) = IS\(-(})=*a = l3. 

Namely, if ƒ e a \ $ then -ƒ G fi \ (-/S) = a \ (-a), hence ƒ £ a. 
Due to (2.1), we can characterize an ordering a by the characteristic 

function e a \ (_ a ) of a\(-<x): e a \ ( _ a ) ( / ) = 1 or 0 according to whether or not 
ƒ G a \ (-a). We consequently get an injective map 

<#-Spec4 - n {0,1}, 

« - * (e«\(-«)(/))-

On YlfszA {0,1} we consider the product topology yielding, by Tychonoff s 
theorem, a compact space (compact is to include the Hausdorff property). We 
claim that the image of yp is closed in the product topology. By pulling back 
the topology of Inn// to ^-Spec4 via xp, we get what we call the Tychonoff 
topology of &-SpecA, in which ^-Spec^4 is compact. The proof that Inn// is 
closed follows well-known patterns. We therefore only present the typical 
argument. Assume x = (xf) G Im4>. We have to find a G ^-Specyl with 
x/=z ea\(-a)(f)- If s u c n a n a exists it would coincide with {ƒ \xf= 1 or 
X r == X _ f == 0}. We therefore study this latter set, call it a and have to show 
that a satisfies a + a C a , a a C a , a U - a = i , a n - a a prime ideal. As an 
example, we treat the question a 4- a c a. Suppose ƒ, g G a but ƒ + g £ a. 
The first case to consider might be as follows: xf = xg = x_if+g) = 1, xf+g = 0. 
Consider the open neighborhood U = {(yh) G FI{0,1} \yf= 1, yg= 1, yf+g = 
0} of x. By assumption, there is fi G ^-Spec^l, with $(/?) G U. This means 
ƒ, g G /} \ (-/?) but ƒ + g £ j8 \ (-/?) which is impossible. All the other cases 
are treated similarly. 

A subbasis of the Tychonoff topology of ^-Specyl is given by the sets 
( a | / G « \ ( - a ) } = {ƒ>()} and {«| ƒ « a \ (-«)} = { ƒ = 0} U {-ƒ> 0}. 
But since {ƒ = 0} = { « | / and -ƒ not in a \ (-a)} we see that { ƒ = 0} is also 
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open. Note that { fx = 0} n • • • n { / r = 0} = (EJ/,2 = 0}. This provides the 
proof of statement (i) in (2.2); (ii) is clear. 

(2.2) PROPOSITION, (i) The constructible subsets of &-SpecA form a basis for 
the Tychonoff topology of @-SptcA. 

(ii) In the Tychonoff topology ^-Spec^4 is compact. 
(iii) A set is constructible if and only if it is a clopen set ( = closed and open 

set) in the Tychonoff topology. 

PROOF, (iii) Since the complement of a constructible set is also constructible, 
these sets are clopen, in view of (i). If a set S is clopen it is, as an open set, a 
union of constructible sets. A finite number of them already cover S since S, 
being closed, is compact. 

As noted, it is not the Tychonoff topology we are really interested in. The 
topology of &-SpecA has as a basis the sets D(fv...,fr) = {fx > 0 , . . . , fr > 
0}. Therefore, it is coarser then the Tychonoff topology. This gives, using (2.2), 
the 

(2.3) THEOREM. &SpQcA is a quasicompact space, every constructible set is 
also quasicompact. 

EXAMPLES, (i) Let K be a formally real field. Then ^-Spec# is the set of 
orders P of K, often denoted by X(K) [B, LI]. We have Z > ( / ) = { P | / G / > \ 

{0}}. In this case, the topology is clearly Hausdorff, rendering X(K) into a 
compact space. X{K\ with its topology, plays an important role in the 
algebraic theory of quadratic forms [LI]. The topology of X(K) is often 
referred to as the Harrison topology. 

(ii) A = R[T]: The orderings a with supp(a) = 0 are just the sets P n R[T], 
where P is any order of R(T). The valuation ring A(P9 R) is either R ^ " 1 ] ^ - ^ 
or R[T](T_a) for some a G R. In the first case we have the two possibilities 
P^ defined as follows: It is enough to say when ƒ G R[T] lies in P£. Let 
ƒ = I > , T ' , an * 0; then ƒ G i>+ ~ an > 0, ƒ £ ? ; ~ (-l)"an > 0. In the 
case of R[T](T_a) we also get two possibilities P*. Namely, if ƒ e R[T\ 
f = (T - a)kg(T)9 g(a) * 0, then ƒ € ? > g(a) >0, ƒ e P~ ~ (-l)kg(a) 
> 0. Note that the corresponding ultrafilters on the affine line R have already 
been dealt with in the examples after (1.10). 

Next we consider orderings a with t)a = supp(a) ¥= 0. Then t)a = (T - a) 
for some a e R and a = aa = { ƒ G R[T]\f(a) X0}, <xa is associated to the 
principal ultrafilter containing { a}, in the map of Ultrafilter Theorem (1.11). 

In this case the topology is not Hausdorff. In fact, the singletons j r e not 
always closed sets. To prove this consider Pa

+. We claim <xa e {Pa
+}. If 

<xa G D(fi, . . , ƒ „ ) then we have f(a) > 0, which implies f G Pa
+. Hence, 

aa G {Pa
+ }. Additionally, one can prove directly (Pa

+) = {P„ ,aa}; however, 
this will also follow from more general arguments, see (2.4). 

The fact that the topology of &-SpecA is not Hausdorff, even worse, that 
singletons are not closed in general, might be considered a great disadvantage 
compared with the nicer Tychonoff topology. However, it is just the structure 
of the closure of singletons that is the, perhaps, most important feature of 
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&-SpecA, as we will see in many instances, beginning with the next proposi­
tion, where a, ft e ^-SpecA 

(2.4) PROPOSITION. ] 8 G {a} « a C j 8 , 

PROOF. ( => ) Suppose we find f<£a\ft, then (-ƒ)(/?) > 0. Hence, /)(-ƒ) n 
{a} ¥= 0 which means (-ƒ)(«) > 0, / ( a ) < 0 but, by assumption, ƒ (a) > 0. 
( <= ) Consider a neighborhood Z>( f l 9 . . . , ƒ„) of 0. We have ƒ,( 0) > 0 for all 
/ 's. In case a £ Z>( j ^ , . . . ,ƒ„) then /,(a) < 0 for some /, hence -ƒ, e a, and 
-ƒ]. G /? would give the contradiction. 

We say that a,]8G ^-Spec^4 can be separated if they have mutually disjoint 
neighborhoods. 

(2.5) PROPOSITION, a, ft can be separated if and only if a <£ ft, ft <£ a. 

PROOF. If a and ft can be separated then a <£ ft, ft <t a in view of (2.4). For 
the converse, pick ƒ e a \ /}, g G ] 8 \ o and set h = ƒ - g. Then /i(a) = / ( a ) 
- g(a) > 0, h(ft) < 0, which gives a G D ( / I ) , ft e D(-/i), D ( / Ï ) n D(-h) = 
0 . 

These last two propositions admit a number of corollaries. To have a 
convenient terminology we say that ft specializes a or is a specialization of a if 
a c ft, we write a -> /?; in this situation, a is called a generalization of ft or is 
said to generalize ft. As a first consequence we state 

(2.6) PROPOSITION, (i) The specializations of an ordering form a chain under 
inclusion. 

(ii) An ordering is contained in a unique maximal specialization. 
(iii) {a} is closed if and only if a is a maximal ordering. 

PROOF. TO prove (i) one only observes, by (2.4), that a neighborhood of ft> 
where a -^ ft, necessarily contains a; then (2.5) applies. One easily checks that 
the union of all specializations of a given a is an ordering, hence the maximal 
specialization, (iii) follows from (2.4). 

The fact that the closure of a singleton {a}, i.e. the set of all specializations 
of a, is a totally ordered set containing a minimum and a maximum is one of 
the main features of the topology of &-SpecA. It has no counterpart in the 
Zariski spectrum Spec A. M. Knebusch and H. Delf s [Kn, DK] have taken this 
property as the basis for their choice of the notation "SperA" for the real 
spectrum of A. The specializations of a given point form a closed chain or, in 
other words, a spear, and ^-Speol is the union of such spears. Combining 
this fact with the notation Spec^4 for the Zariski-spectrum, they came to 
introduce the notation Sper A We however, because of the reasons explained 
in the introduction, will not follow this otherwise nice invention. 

The closed points of ^-Spec^4 form a subset which we denote by ^-Specm A, 
the maximal real spectrum of A, in view of (2.6)(iii). It is a surprising fact that 
^-Specm A is a compact space, which was first noticed by L. Bröcker. Note 
that in general ^-Specm^4 is not closed in ^-SpecA 

(2.7) PROPOSITION. ^-Specm^l is a compact space. 
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PROOF. That ^-Specm A is Hausdorff follows from (2.5). Consider next a 
cover of ^-Specm A by open sets If-, i e ƒ, of ^-SpecA We claim that the If's 
also form a cover of ^-Spec^4. To see this pick a and let /} be the maximal 
specialization of a and be contained in Ut. Then a e Ut also, because of (2.4). 
Since &-SpecA is quasicompact, a finite subfamily already covers &-SpecA9 a 
fortiori tX-SpecmA. 

EXAMPLE. A = R[T]. Here, ^-Specm^ = {P~} u [aa\a e R} u {P+}, 
and is homeomorphic to the compact extended real line { - o o } U R U { + oo}. 
This is a really nice fact! 

The maximal real spectrum was used by N. Schwartz to characterize abstract 
affine semialgebraic spaces, see §4. As stated in (2.6)(ii) there is a map 

ƒ ^-Spec^4 -> ^-Specm A, 
' \ a •-> maximal specialization of a. 

N. Schwartz [SI] showed that X is continuous. Since ^-Spec^l is quasicompact 
this implies that on ^-Specm A we have the quotient topology with respect to 
\ . To show that X is continuous, one essentially imitates the proof that 
compact spaces are regular in order to separate a closed point a and a closed 
set C c &-SpecA with a £ C, see [LI] for details. 

In the geometric situation, i.e. A an affine algebra over a real closed field, 
^?-Specm A provides the space in which every ultrafilter of semialgebraic sets 
has a unique limit. The proof of this is postponed to the next section in order 
to avoid a longer digression. 

We now return to the studies of specializations. In particular, we shall see 
that the term "specialization" is quite appropriate. In fact, every specialization 
gives rise to certain places between associated fields. For the notion of a place 
see [ZS]. 

Given a e <%-SpecA we have set t)a = supp(a) = a n -a. By â we denoted 
the induced order on k(t)a) — qaot(A/t)a) = A^ / t y ^ ^ . Now we choose any 
real closure of (k(t)a),â). They are all conjugate over k(t)a) [PC]. Let k(a) 
denote a (quite arbitrarily) chosen real closure of k(t)a). We will often be in 
the situation that k(t)a) lies inside some real closed field R which induces the 
order â on k(\)a\ i.e. â = k(t)a) O R2. In this case, R contains a unique real 
closure, namely the algebraic closure of k(t)a) in R, which is then to be taken 
as k(a). 

There is always the natural map 

7Ta: A -> A/t)a -» k(a), a -> a + t)a e k(a), 

and we have n~l(k(a)2) = a. Therefore, the orderings of A are just the 
preimages of the positive cones of real closed fields R under all possible 
homomorphisms A -> R. Suppose first that t)a c t)p for a, /? e ^-Spec^4. We 
then have the homomorphism [xa p. A/t)a -> k(fl), a + tya -> a + t)p G /c(/?). 
Keeping in mind the orderings â, /} on A/t)a, A/t)p respectively we im­
mediately have: 

(2.8) PROPOSITION. The following statements are equivalent: 
(i) a c p. 
(ii) t)a c t)^ 0«d /xtt £ Z5 order preserving. 
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We now assume a c /?. Then fta ^ A/t)a -> k(fi) is order preserving with 
k e r /V/* = Qfi/Qa- Writing ^ for /x a j , we set ^ = (^/^ a)k e r M . The ring 4tt>/l 

is a local subring of /:(«), in fact of k(t)a)9 and /x uniquely extends to a 
homomorphism p: Aap -> k(t)p) which again is order preserving with respect 
to the orders â, /} of k(a) and A:(y8) respectively. Hence, the maximal ideal of 
Aa£, being the kernel of /A, is convex in ^4a£. Now the place extension 
theorem of Brumfiel, in the form given in (1.8), applies. We get the existence of 
a place j&: k(a) -> K U oo, yielding a commutative diagram: 

A:(a) • KU oo 

We may assume that A' is the residue field of k(a) under /L Then K is itself 
real closed, see [PC], Thus we have proved half of the following result: 

(2.9) PROPOSITION. The following statements are equivalent: 
(i) a dp. 
(ii) t)a c t)p, napi A/t)a -> A/t)p extends to a place #: k(a) -> Â" U oo, 

w/iere # w a real closed extension of (k( t)p), )8). 

PROOF. Only the proof of (ii) => (i) is missing. Since a positive element in 
k(a) is a square and any valuation ring is integrally closed we get that j&, and 
hence ti, is order preserving . Now (2.8) applies. 

In general there are many extensions of /xa ^ to places on k(a). In the fourth 
section, we shall deal with the set of all these extensions. 

We next consider the topology of subspaces Y of ^-SpecA To simplify 
matters we assume that Y is closed in the Tychonoff topology or, as can easily be 
checked, that Y is an intersection of constructible subsets of ^-SpecA Thus, 
in particular, all our results are applicable to constructible sets. 

Given a e y, we will first look at the specialization of a in Y. Here we have: 

(2.10) PROPOSITION, (i) a admits a unique maximal specialization in Y, 
(ii) a is maximal in Y iff {a} is closed in Y, 
(iii) Ymax := {a e Y\a maximal in Y } is a compact space, 
(iv) the map Y -> Ymax, a •-» maximal specialization of a, is continuous. 

PROOF. Once (i) is proved one can argue as previously. Consider y = Uj8 
where a c /}, /} G Y. As the set of these /} 's is totally ordered under inclusion, 
we have that y is an ordering of A. Suppose y £ Y. Then, by the definition of 
the Tychonoff topology, there is a constructible set S = { ƒ = 0, g1 > 0 , . . . , gr 

> 0} containing y but itself being contained in the complement of Y. Now 
/ ( y ) = 0 implies that ƒ, -ƒ e y hence ƒ, -ƒ e /}, i.e. ƒ(/}) = 0, for some /? D a, 
j8 G Y. Then y G { £ } by (2.4), and g,(y) > 0 imply &(/*) > 0, thus ] 8 G 5 : a 
contradiction. 

As we did in the case of &SpeCi4, we may now also rephrase (i) by stating 
that Y is a " union of spears". 
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Note that Y also carries the subspace Tychonoff topology. Closed, respec­
tively open, subsets of Y are referred to as Tychonoff- closed, respectively 
Tychonoff-open, if this topology is being considered. 

(2.11) PROPOSITION. A subset X o Y is closed (resp. open) in Y iff it is 
Tychonoff-closed {resp, Tychonoff-open) and is closed with respect to speciali­
zations {resp. generalizations) in Y. 

PROOF. It is enough to consider the characterization of closed sets, and in 
this case we only j>how that X is closed provided the other properties are 
assumed. Let /? e X n Y, then X n D{fl9..., fr) # 0 for any given fv...,fr 

with /;.(/}) > 0. Now, in the Tychonoff topology of ^-Spec4, the sets X n 
D(fv • • • » /r) a r e nonempty closed subsets of the compact space X. Therefore, 
their intersection is not empty. This means we can find a e X with ƒ (a) > 0, 
whenever f {ft) > 0. But, by (2.4), this implies a c ]8, a G I , j8 e 7 and, by 
assumption, J 8 G I . 

In this relative situation, we also introduce the notion of sets that are 
" constructible in 7 " . By definition, these are sets Y O C, where C is any 
constructible set in 31-SpecA. They are clopen in the Tychonoff topology of Y 
of which they form a basis. They are quasicompact subsets of 7, but in general 
they are neither open nor closed. It is clear that finite unions of sets of the type 
Y Pi D{f1,...,fr) are open and constructible relative to 7: these sets are 
referred to as open-constructible. Equally, the finite unions of the type 
Y Pi { fx > 0 , . . . , fr > 0} are closed and constructible in Y and are referred to 
as closed-constructible. The next result is easily proved by keeping in mind 
that a set constructible in Y is quasicompact and that the open-constructibles 
in Y form a basis of the topology. However, despite its simplicity, it will finally 
lead to the so-called finiteness theorem of semialgebraic geometry in the next 
section. 

(2.12) PROPOSITION. Let X be constructible in 7, then X is open {resp. closed) 
in Y iff X is open-constructible {resp. closed-constructible) in Y. 

We will conclude this section by looking at ^-Specv4 as a functor on the 
category of commutative rings with unit into the category of topological 
spaces. Given a homomorphism <p: A -> By A,B rings, we obtain the induced 
map 

_ f^-SpecB -> ^-Spec4, 

* " \ ft ~ ^(fi). 
It is easily checked that <?*(/?) = <p_1(>8) is indeed an ordering of A. Setting 
a = <p~l{P) we get supp(a) = <p-1supp(/?). Therefore, we obtain the order-
preserving monomorphism 

(A/t)a9a) ^ (B/\)fi,p), a + ç a -> <p(a) + t^. 

If ƒ G A then 

(2.13) * [ / M i 8 ) ) ] - 9 ( / )(/»)• 
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Consequently, <p*x(^( ƒ )) == ^(<P( ƒ ))> a n d this leads to 

(2.14) PROPOSITION. <p* is continuous in the topologies of real spectra and in 
the Tychonoff topologies, and the inverse images of constructible sets are con­
structible sets. 

We have (<p*/>)* = */>*<P*, thus the last result may be rephrased by stating 
that A -» ^-Spec4 is indeed a contravariant functor. 

The direct image <p*(C) of a constructible C is in general no longer 
constructible. All that can be said in general is that <p*(C) is an intersection of 
constructible sets, since <p*(C) is, in the Tychonoff topology, an image of a 
compact set under a continuous map, hence closed in the Tychonoff topology. 
To obtain an example where q>*(C) is not constructible, consider an P-affine 
integral domain A, R a real closed field, with dim A > 1 and function field F. 
The inclusion i: A -* F gives rise to /*: ^-SpecP -> &-SpecA. Assume the 
image of i* is constructible, i.e. /*(^-SpecP) = {A n P\P order F] is a finite 
union of nonempty sets of the type 

D(f;g1,...,gr)={a\f{a) = 0,g1(a)>0,...,gr(a)>0}. 

Since f (A n P) = ƒ we can eliminate all ƒ's. But then (1.3) guarantees the 
existence of a maximal ideal m of A with A/m — R and gt + m> 0, 
i = 1 , . . . , r. Hence, we obtain a := {h e A \ h + m > 0} in D(gv..., gr), 
which is evidently not of the form A n P, P an order of P. 

However, there are cases where the image q>*(C) is again constructible. In 
[CCI, 2.3], Coste and Coste-Roy proved 

(2.15) THEOREM. If <p: A -* B makes B into a finitely presented A-algebra 
then <p*(C) is constructible for any constructible subset C of ^-SpecP. 

In the sequel we shall give a proof which is essentially their proof, based on 
model theory. The proof will illustrate the fact that (2.15) is a simple conse­
quence of the elimination of quantifiers in the theory of real closed fields. 
Moreover, a refusal to use this fundamental model-theoretic result would even 
prevent clear insight into what is really the crucial point when dealing with the 
question whether <p* preserves constructibility or not. In analyzing what to do 
in order to prove (2.15) we at once meet the problem of studying the fibers of 
<p*. Indeed, if <p: A -> B and C, constructible in ^-SpecP, are given, then 

<P*(C) = {a <=@-SpecA\<pil(a) O C # 0 ) . 

For convenience we recall our convention that we have always chosen a fixed 
real closure k(a) for an ordering a of a ring A, i.e. we attach to a a fixed 
homomorphism 7ra: A -* k(a\ where a = (w«)*(A:(a)2) and k(a) is the 
chosen real closure of (k(t)a\ 5). 

<p $ 

(2.16) PROPOSITION. Let A -* B -> C be ring monomorphisms and a, /?, y 
orders of A, P, C respectively. Then the following statements hold'. 
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(i) If <p*(/î) = a then there exists a unique homomorphism <p: k(a) -» k((i) 
yielding a commutative diagram: 

k(a) - Ï — *(j8) 

A^y^\^ 
• B 

(ii) /ƒ i//*(y) = /?, <p*(^) = athen\lso<p = ypo<p. 

PROOF. AS follows from the arguments before (2.13), y induces an order-
preserving monomorphism 9: (k(t)a),â) -» (A:^),/*)• It now follows from 
the theory of real closed fields [PC, p. 32] that 9 uniquely extends to a 
homomorphism y: k{a) -* k(fi). 

To prove (ii) we need only show that \£ <> 9 and ^ © <p coincide on TT^, since 
they are then equal on k(t)a) and, as extensions are unique, we get \£°y 
= \p o <p. But ^ 0 9 0 7 ^ = ^ 0 9 0 7 ^ f0iio w s from the diagram in (i). 

(2.17) THEOREM [CCI, 4.3]. / / « E ^-Spec4 and A -> B is a ring homomor­
phism then the canonical map i: B -> B ®A k(a) induces a homeomorphism /*: 
^-Spec(£ <8>A k(a)) -> q>l\a). 

PROOF. We consider B and k(a) as >4-algebras induced by the homomor­
phism <p and <na respectively. In this way we get the commutative diagram: 

B —'—> B ®A k(a) 
î / / / / î i(b) = b*Al, 

Since iq> = jma and y*(y) = k(a)2, for any y e ^-Speci? <8>̂  &(a), we see that 
<P*0*(y)) = (^«)*^(a)2 = « for any such y. Thus Im/* c ^ ( a ) . To prove 
surjectivity, take /? e ^-Speci? with <p*(/?) = a. By (2.16)(i), we have cp: 
fc(a) -» A:(/3) with <pira = Tr̂ cp. Therefore, we can define a ring homomorphism 
IT: B ®A k{a) -> k(P) by setting ir(b ®A c) = ^(b)y(c). Clearly, mi = 77̂ , 
hence J*(w*/c(/J)2) = /?. Injectivity is more compUcated. We first show: if 
i*M = P then /: /c(y8) -> &(y) is an isomorphism. Consider the diagram: 

5 —'—> B ®A k(a) —> jfc(y) 

A U k(a) 

By definition, k(y) is the real closure of the quotient field F of the image of 
7Ty. If we can show F c /&(/}) c /c(y) then /(&(/?)) = fc(y) must follow since 
i(k(P)) is real closed. Now, as a ring, Im(7ry) is generated by iryi{B) and 
7ryj(k(a)). Clearly iryi(B) = i^(B) c /(&(/})). To determine the image of 7ryy 
we appeal to (2.16); from (i) we get iryj =7 and from (ii) i<p =j follows. 
Hence, Im(7ryy ) c Im 1, and the claim, that i is an isomorphism, is proved. 
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Next assume i*(y) = i*(d) = /?. Since iy: k(/i) -> k(y) and i8: k(fi) -> 
/c(8) are isomorphisms we get an isomorphism \p: k(y) -> /c(8) with ^/ = z8. 
If we can show \piry = TT8 then evidently y = 8. Since 7ry(/3 ®^ C) = 
[(77-y/)(Z?)][(7rYy)(c)] holds (and the same for 8) it is enough to show \p7ryi = 775z, 
4"ryj = *«.ƒ• We get 

Thus, /*: ^-Spec(B g^ /c(a)) -> «pi1^) is shown to be a bijection. It is left to 
prove that z* is homeomorphic. Since z* is continuous by (2.14), we thus have 
to prove that z* is an open map. In order to do this, we appeal to (2.11) since 
7 := (pix(a) is closed in the Tychonoff topology of ^-Speci? (<p* is continu­
ous, {a} is closed in this topology). Note that z* is a homeomorphism in the 
Tychonoff topology since it is continuous and all spaces in question are 
compact. It is sufficient to show that sets of the form z*(D(f)) are open in 
<p*l(a). Thus, assume j8,y G <pix(aX P c Y> Y G '*(£*(ƒ))• We have to show 
by (2.11) that £ e /*(£(ƒ))• Now 

P = i*(8), Y = **(e) for ô, e G ^-Spec(£ <8>̂  &(«)) 

and, for simplicity, we may assume /c(/?) = k(8), k(y) = fc(e). Now, since 
y specializes /? there is, according to (2.9), a place X: /c ( /}) ->#Uoo 

with K real closed, fc(y) c ^ , XTT̂  = 7ry. The homomorphism A -> 2? induces 

/c(a) -» /:(/?) and /c(a) -> k(y). We next show that X is finite on ^ ( ^ ( a ) ) 

and that \<pp = <py holds. In the diagram 

we see that (^(kerju.^ y) = 0 since y~\t)p) a ç l ( ^ ) - l ) a . Hence we obtain 
an extension 

where all maps are order-preserving. Since B^y c Vx, Vx being the valuation 
ring of X, we see that the real closure of q>p(k(t)a)), i.e. q>p(k(a)), is contained 
in Vx (Vx is integrally closed). Moreover, X o ^ = ^ y o <ĵ  = ^ on /t(t)a) and 
the uniqueness of extension yields X <> <pp = cpy on k(a). We can now prove 
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fi e /*(£>(ƒ)). Set ƒ = E*/ ®„ a,. Then y G **(/)(ƒ)) means y = i,(e), *.(ƒ) 
> 0. We have irs( f ) = £(*y Xft/Xtf«./Xfl/) a n d s i n c e â* * ^ W = <Pp (note 
/ = id), we obtain 7rfi( ƒ ) e Vx and then, in view of XTT̂  = iry and Xq̂  - <pY, 
this leads to XTTÔ( ƒ ) = 7re( ƒ ) which forces *rô( ƒ ) > 0 and fi e i*D(f). 

This last theorem is a result that really deserves attention: surprisingly, it 
comprises several seemingly different aspects. Let us consider two of these. 
First assume that K is an ordered field with real closure R and L a finite 
extension. Now L ®K R is a product of several copies (if any) of R and R(^T). 
We thus recover the well-known fact that the extensions of the order of K 
uniquely correspond to the #-embeddings of L into R. As a second example, 
let K9 R be as above and consider all extensions of the order of K to the 
rational function field K(Tl9...9Tn). Clearly, every order of R(Tl9...9Tn) 
restricts to an extension on K(Tl9...9Tn). Now, (2.17) tells us that this 
restriction induces a homeomorphism between the space of all extensions to 
K(Tl9 ...9Tn) and the order space of R(Tl9..., Tn). 

It is also worth noting why Theorem (2.17) is true. To this end let A = k 
denote an ordered field with the order a. Set B = k[T] and R a real closure of 

(k9a). Then (2.17) states that @-SpQcR[T] 4#-Specfc|T] is injective. This 

can be seen directly in the following way: if (T - a) n k[T] = (T - b)C\ k[T] 
for a9b e R then a and b are ^-conjugate inside R. This enforces a = b since 
otherwise we would find a nontrivial /c-automorphism of R9 contradicting 
A\xt{R\k) = 1. It is this rigidity of R\k9 i.e. Aut(i*|A:) = 1, which lies on the 
basis of (2.17) as L. Bröcker has pointed out to me. If one namely replaces the 
real closure by the algebraic closure K and the real spectrum by the Zariski-
spectrum then the canonical map SpecK[T] -* Spec/c(T] is no longer injective 
since for /c-conjugate elements a9b G R we clearly have (T - a)K[T] D k[T] 
= (T- b)K[T]nk[T]. 

We are now ready to prove (2.15). Without loss of generality we may assume 
B^A[Tl9...9TH]/(Fl9...9FJandihaiq>^froj9wherej:A -+A[Tl9...9TH] 
and 77: A[Tl9..., Tn] -> B are the natural morphisms. Now, ^ ( C ) is easily 
seen to be constructible provided C is constructible. Thus we really have to 
deal with the situation <p: A -» A[Tl9..., Tn]9 <p the inclusion map. It is 
furthermore sufficient to assume that C = {F = 09GX > 0 , . . . 9G r> 0}. Now 
under /: A[Tl9..., Tn] -> k(a)[Tl9JL.., TJ, we have that <pl\<x) n C corre­
sponds to the constructible set C = {F = 09GX > 0,...9G t > 0}, where F 
denotes / (F) etc., i.e. F is the polynomial over k(a) obtained after reducing 
the coefficients modulo \)a. In the next section we will prove in (3.2) that 
C_ # 0 if and only if there is a point x = (xl9..., xn) G k(a)n with F(x) = 0, 
Gx(x) > 0, . . . , G r ( x ) > 0. (The proof is postponed at this point to avoid 
digression.) What we now have to do is^to express_the existence of such a 
solution x G k(a)n of the system F = 0, Gx > 0 , . . . , Gr > 0 by a finite boolean 
combination of statements of the form H(âvâl9...) > 0 where H is a 
polynomial over Z and the «^ 5 2 , . . . are the images of the coefficients 
al9 al9... of F9 Gl9..., Gr e ^4[7\,..., Tn] in /c(a). But exactly this is provided 
by Tarski's theorem of the elimination of quantifiers in the theory of real 
closed fields. By considering the elements H(al9a2,...) in A for every 
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occurring polynomial H, we get, according to the above boolean combination, 
a constructible set S in ^-Spec/1 such that <p*\a) n C * 0 if and only if 
a G S. Therefore, <p*(C) is constructible. For model theory cf. [P, S]. 

3. First applications to semialgebraic geometry. In this section we resume the 
considerations of §1. Thus, let R be a real closed field and A an affine integral 
domain over R with associated affine algebraic set M(R). We also use the 
notation R[M] = A and F for the quotient field of A. Recall from §1 the 
embedding 

lM(R)~>@-SpecR[M], 

{ x^ax={f\f(x)>0}. 

In §1 we wrote $ (x ) = (mx , R2) which clearly corresponds to the ordering ax. 
We therefore write $(x) = ax. 

If C is a constructible set then C n M(R) := $_ 1(C) is a semialgebraic set 
and, conversely, every semialgebraic set in M(R) is of the form C C\ M(R) îor 
some constructible set C in ^-SpecjR[M]. To see this, one only needs to note 
that { / = 0 , g l > 0 , . . . , g r > 0 } n M W = { x G M W | / ( x ) = 0, gl(x) > 
0 , . . . , gr(x) > 0} holds. It will turn out in a moment that C -> C n M(.R) is, 
in fact, a one-to-one correspondence between constructible sets and semialge­
braic sets. But before proving this we want to exploit the observation that the 
above map is actually a map 

M(R) -*#-SpecmJR[M]. 

By (1.13), M(R) is dense in ^-Spec#[M], thus a fortiori dense in 
^-Specm#[M]. In addition, by (2.7) this latter space is a compact space. We 
therefore see that &-SpzcmR[M] is a kind of a geometric compactification of 
M(R). 

We next consider ultrafilters F of semialgebraic subsets of M(R) and their 
associated ordering a G ât-SpecR[M]. As ^-Specm.R[M] is compact, F has a 
limit point in this space. In fact, it will turn out that F has exactly one limit 
point, namely the maximal specialization of a. But before proving this, we first 
have to give a new description of the correspondence between ultrafilters and 
elements of ^-SpecjR[M] since, from now on, we are dealing with orderings a 
rather than with the pairs (ty, P) of §1. Using only the definitions, we check the 
following facts: If a e ^-Spec#[M] is given then it is associated to the 
ultrafilter F which is generated by the sets { / = 0 } f o r / e t ) a and { g > 0} for 
g e a \ (-a). Conversely, if F is given, then a = { ƒ G #[M]|{ ƒ > 0} G F } is 
the corresponding ordering of R[M]. 

(3.1) PROPOSITION. If F is associated to the ordering a e ^-Speci*[M] then 
the maximal specialization of a is the unique limit point of Fin ^-Specm R[M]. 

PROOF. Let /? be a limit point of F in ^-Specm R[M]. In view of (2.6), we 
need only show a c p. In case a <£ /?, we find ƒ with ƒ(«) > 0 but ƒ(/?) < 0. 
Now the set S = {x G M(R)\f(x) > 0} belongs to F, and U = {-ƒ > 0} is a 
neighborhood of /?. Clearly S Pi U = 0 , contradicting that /} is a limit point 
of F. 
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In §1 we studied the center of an order P of F. In general, not every order 
had a center. We now can introduce the center c(P) of any order P by 
defining it to be the limit of F(P) in ^-Specmi*[M]. Note that c(P) is the 
maximal specialization of A n P and that this definition coincides with the 
previous one if P already has a center in M(R). 

By merely repeating the arguments in the proof of (1.10) we obtain the final 
version of Dubois' characterization of centers of orderings. 

(3.2) THEOREM. The set of centers of orders in ^-Specm R[M] is the closure of 
M(R)reg in ^-Specm#[M]. 

We now return ot the embedding 4>: M(R) -> ^-SpecjR[M]. As already 
mentioned, one has the following 

(3.3) THEOREM. The assignment C •-> C n M(R) is a lattice isomorphism 
between the lattice of constructible subsets of ^-SpecjR[M] and the lattice of 
semialgebraic subsets ofM(R). 

PROOF. This map is clearly a lattice homomorphism, and it is surjective as 
remarked in the beginning of this section. Thus, it remains to prove that 
C n M(R) = 0 implies C = 0 . But this statement is nothing else than the 
Artin-Lang homomorphism theorem, as we will see. Without loss of generality 
we may assume C = { ƒ = 0, gx > 0 , . . . , gr > 0} =£ 0 and we want to show 
C n M(R) # 0 . Pick a e C, then we get ƒ e t)a and gl9..., gr e â \ {0} in 
k(t)a). Now by (1.3), we find a homomorphism <p: R[M]/t)a -> R with 

<p(gt) > 0, i = 1 , . . . , r. Considering R[M] -> R[M]/t)a -> R we obtain x e 
M(R) n C. 

By this last theorem, there is, for a given semialgebraic set S c M(R), a 
unique constructible set C c ^-Spec#[M] with C n M(R) = S. That there is 
at least one is a trivial remark since one may use the description of S to define 
C. In view of this, the main feature of (3.3) is the independence of the chosen 
description of S; any two descriptions of S will result in the same construct­
ible set C 

This uniquely determined constructible subset C will be denoted by 5. Using 
(3.3) one sees that 5 is the smallest constructible subset of ^-SpecJR[M] 
containing S. Moreover, if a corresponds to the ultrafilter F, then a G S iff 
S e F. This follows directly from the way F is related to a and the above 
description of 5 in terms of S. 

Next, we are going to study the topological properties of the mapping 
S •-> S. Since M(R) inherits the subspace topology of ^-SpecjR[M], it is 
obvious that, given semialgebraic subsets S c 71, S is open (respectively 
closed) in T if S is open (resp. closed) in f. In fact we will prove more: 
namely, that S is open in T iff S is open in f. 

This is much harder than to derive (3.3). In particular, we will make use of 
the "base extension of semialgebraic sets". This is an important operation, in 
particular, in the work of Delfs and Knebusch, cf. [DK2]. Let R c R' be two 
real closed fields and let S c M(R) be any semialgebraic set. Fix a presenta­
tion R[M] = R[TV..., Tn]/(Fl9..., Fm). This means that we regard M(R) as 
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a subset of Rn defined by the equations Fx = 0 , . . . , Fm = 0. This point of view 
will be adhered to in the sequel. 

Accordingly, S can then be described as follows: 

S= (j{x^R"\F1(x)~ . . . = Fm(x) = 0, ƒ,(*) - 0, 
i - i 

ga(x)>09...9giri(x)>0}9 

where fi9 gil9..., gt e ^ [ 7 ^ , . . . , Tn], Using such a description we define the 
base extension S(R') as 

S ( i ? ' ) = Û { * * * ' " I * i ( * ) - ••• = Fm(x) = 0, ƒ,(*) = 0, 

g / 1 ( x ) > 0 , . . . , g , r / ( x ) > 0 } . 

Clearly, the question arises whether £(# ' ) is independent of all the choices we 
have made. In fact, it turns out that S(R') is well defined. The proof of this 
claim is a further instance where model theory naturally applies. In particular, 
we make use of the model completeness of the theory of real closed fields. This 
asserts that for any pair of real closed fields JR' D R a system of polynomial 
equalities and inequalities with coefficients in R that has a solution in R' also 
has a solution in R. Hence we get 

(3.4) PROPOSITION. S(R') is well defined relative to a fixed description of 
M(R). 

Even more is true. One can also eliminate the dependence on a fixed 
description of M{R), However, then one has to make use of semialgebraic 
morphism, see e.g. [DK2]. For our purposes, the preliminary version (3.4) is 
general enough. 

(3.5) PROPOSITION. Let S9 T be semialgebraic subsets of M(R). Then the 
following statements hold. 

( i ) S c TiffS{R')cT{R')9 

(ii) if S c T9 then S is open {respectively closed) in T iff S{R') is open 
{respectively closed) in T{R'). 

PROOF. Here again, the proof follows from the model completeness of the 
theory of real closed fields. Let S and T be given by the formulas o and T in 
the language of ordered fields with constants in R. Then S c T is expressed 
by a -> T, and S c. T9 S open in T9 by 

o -* T A(Vx)(3e)(V>>)[(e > 0 A a{x) A T ( ^ ) A d{x9 yf < e) -> o{y)\. 

An analogous statement expresses S c T, S closed. Then model completeness 
gives the desired conclusion. 

There is a close connection between the two operations of extending the base 
and forming S. Let R[M] = R[xl9...9xn]9 xt the ith coordinate function. 
Given a e <%-SpecR[M] we set xt = ^ ( x , ) G k{a). With these notations we 
have the readily checked 

(3.6) PROPOSITION. If S a M{R) is a semialgebraic set then a G S iff 
{xl9...9xn)^S{k{a)). 
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In view of this result one may regard the real spectrum of a ring as an object 
which comprises and "condenses" various real closed fields related to the ring. 
Consequently, the theory of the real spectrum is a theory of a somewhat 
extended class of real closed fields, and this is the reason why, quite naturally, 
model theory applies. 

We are now prepared to prove one of the most fundamental theorems of 
semialgebraic geometry. Several applications will show its central importance. 

(3.7) THEOREM. Let 5, T be semialgebraic sets in M(R) and assume S c T. 
Then S is open {respectively closed) in T if and only if S is open (respectively 
closed) in T. 

PROOF. Since T\S = f\S v/e need only consider the case that S is open 
in T. In order to prove that S is open in f we may appeal to (2.11) since S and 
f are clopen in the Tychonoff topology by (2.2). Hence, we have to show that 
S is closed under generalizations relative to f. Thus, assume a e f, /? e S, 
a c /? are given. We have to prove (^«(x^,...,7ra(xw)) =:x a e S(k(a)\ in 
view of (3.6). By (2.9) we face the following situation where A = R[M]: 

k(a) • KU oo 

J . J 
V • K 

J J 

where V is the convex closure of Aap in k(a) and /x extends the canonical 
m a P ^ « , / 8 ^ k($fi)-> k(P)-

As k(a) is real closed the valuation ring V is henselian [PC]. Consequently, 
jx admits a section s: K -> K' c V [PC], s is the identity on R. By assumption 

and (3.6) we have ( ^ ( x j ) , . . . , Wp(xn) := x^ G S(k(/3)) c S(K). S(K) is open 
in T(K) by (3.5)(i). We therefore find e G K with e > 0 and 

(\/y e T(K))[(r(y) A d(xfi9 yf < e) -> a(y)], 

where we have assumed as before that S and T are described by a and T, 
respectively. 

Denote the formula in the square brackets by T(X^, e, y). Since the section s 
is order-preserving we get that K' satisfies r(s(xp)9 s(e\ y) which, by model 
completeness, implies that also k(a) satisfies r(s(xp\ s(e\ y). Now assume 
xa & S(k(a)). Then necessarily 

d(s(xfi),xa)
2>s(e). 
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Applying the order-preserving place /i to this inequality we see 

since all entries are elements of V. But jis = id and /x(xa) = x^, which gives 
the contradiction. 

This beautiful proof is due to L. v. d. Dries. In [Dr] he presented the 
model-theoretic background of this approach. 

As a first application of (3.7) we will derive the so-called finiteness theorem 
[De, Brul, C] of semialgebraic geometry. This theorem deals with the descrip­
tion of open semialgebraic sets. Assume S, T are semialgebraic sets and that S 
is open in T. By (3.7) we see that S is open in t. Now (2.12) applies and states 
that S is open-constructible in t. This means that S is a finite union of sets of 
the type {a e ^ - S p e c # [ M ] | « e f , fx(a) > 0 , . . . , ƒ,(«) > 0). The latter set 
equals £/, where U = {x e M(R) \x <= T, fx(x) > 0 , . . . , fr(x) > 0}. Thus 
S = Üx U • • • U Us where Ut is of the type just described. Going back to 
M(R\ we obtain S = Ux U • • • U Ur, i.e. S can be described by a finite 
disjunction of "open conditions" fx > 0 , . . . , fr > 0 relative to T. This is the 

(3.8) (FINITENESS THEOREM). If S and T are semialgebraic subsets of M(R) 
and if S is open in T then S is a finite union of open subsets of the type 

{ x e r | / 1 ( x ) > 0 , . . . , / r ( x ) > 0 } , 

wherer^N9fl9...JrGR[M]. 

One should notice that, using (3.8), one can derive an analogous statement 
for the case that S is closed in T. It says that a closed S can be described by a 
finite disjunction of "closed conditions" fx > 0 , . . . , fr > 0. 

In the proof of the finiteness theorem we applied the properties of the real 
spectrum to obtain results on semialgebraic sets. We next reverse the order of 
arguments to study the connected components of a constructible set in 
^-SpeciÊ[M]. We will start with the decomposition of a semialgebraic set into 
semialgebraic components [CCI, 5.5; DK1, §10ff; Brul, p. 260 ff]. A semialge­
braic set S c M{R) is called semialgebraically connected if it has no decom­
position S == Sx Ù S2 into disjoint open semialgebraic subsets Sv S2. As a 
consequence of (3.8) we obtain 

(3.9) PROPOSITION. S is semialgebraically connected if and only if S is a 
connected topological space. 

PROOF. If S is semialgebraically connected but S is not (as a topological 
space) we have S = Ux(j U2, Ut* 0, Ut open in S. In the Tychonoff 
topology, S is clopen, hence Ut is also clopen. Again by (2.2), each Ut is 
constructible, thus Ut = St for some semialgebraic set St c 5, S, =£ 0 . We get 
S = Sx Ù $2 with Si open in S by (3.7), a contradiction. The converse follows 
from (3.7). 

The main importance of (3.8) lies in the fact that the real spectrum, with its 
topology, remedies certain defects arising from the "poor" topology of an 
arbitrary real closed field R. Namely, if R =£ R, then R and, consequently, 
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every semialgebraic set is totally disconnected. Thus it is useless to define 
connected components by referring to the strong topology. However, one may 
introduce, as we did, the notion of a semialgebraically connected semialgebraic 
set. It is then a remarkable fact that this notion corresponds to the usual 
notion of a connected topological space if we pass to the real spectrum. 

Even more is true. It is known that every semialgebraic set S decomposes 
into a finite number of open, semialgebraically connected, semialgebraic 
subsets, its so-called semialgebraic connected components Sx,..., Sr, see [Brul, 
p. 260 ff; CCI, 5.5; DK1, §10 ff]. By (3.7) and (3.9), each S, is an open 
connected subspace. Because of S = Sx Ù • • • ÙSr we see that the Si9 i = 
1 , . . . , r, are the connected components of S. Taking into account that every 
constructible subset is of the type S, S semialgebraic, we obtain the following 

(3.10) THEOREM. Every constructible subset C of ^-Speci£[M] has a finite 
number of connected components and, if C ~ S, S semialgebraic, the connected 
components of C correspond bijectively to the semialgebraic connected components 
ofS. 

REMARKS, (i) It would be really nice to have a proof of (3.10) which does not 
start on the semialgebraic side and then passes to the real spectrum. Such a 
proof should work completely inside @-Spec R[M] and then transfer the 
results to M(R) in order to derive the finiteness of n0(S). An example of this 
type of proof is given by the proof of (3.8). 

(ii) Theorem (3.7) is also very important if one studies sheaf theory on 
semialgebraic sets. By (3.7), one can relate sheaves on semialgebraic sets to 
sheaves on constructible sets. This change in the point of view has some 
advantages. Details can be found in H. Delfs's paper [D]. 

We want to conclude this section by briefly describing some of the nice and 
important results of Bröcker on the number of equalities and inequalities 
needed to describe a semialgebraic set, cf. [Br3, Rr4]. For the sake of brevity 
we will confine ourselves to the question of describing an open semialgebraic 
set 

S(A,...,fr) = {* G M{R)\f,{x) > 0,...,fr(x) > 0} . 
The problem is then the following: Is there a bound s(M) depending only on 
M such that every open semialgebraic set S(fv...,fr), fv...,fr^R[M], 
r e N,can already be described by s = s (M) inequalities, i.e. 

S(fl9...,fr) = S(gl9...9g,)9 g l , . . . , g 5 e * [ M ] . 
L. Bröcker proves 

(3.11) THEOREM [Br3, 6.4]. There is a bound s(M) and in fact 

s(M) < ( J * I' I' " n ifn = dimMis [odd> v ' \2-4-6-- n J [even. 
It is not possible to present his ingenious proof here. However, we shall 

sketch the main line of the proof: Recall that after (1.12) we derived the 
diagram 

M(R) C ^-Speci*[M] 

J 
^-SpecF 

file:///2-4-6--
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where F = R(M) is the function field of M. Now consider S = S(fl9...9fr\ 
as above. Then pass to S c ^-Spec#[M]. By (3.7) we know that S is open in 
^-Spec#[M]. Next study S n ^-SpecF =: U. We have 

U= { P e ^ - S p e c F l A , . . . , ƒ , € / > } . 

The latter set belongs to the so-called Harrison basis of ^-SpecF and is often 
denoted by H(fl9..., ƒ,). If we had S = D(gl9..., ga) then also # ( fl9 . . . ,ƒ ,) 
= H(gl9...9gs). Consequently, as a first step to a solution of our problem, we 
would have to solve the corresponding question for the description of the open 
sets H( fl9 . . . , fr) in ^-SpecF. This is a problem that belongs to the theory of 
formally real fields and has been solved in the 70s by the theory of quadratic 
forms over formally real fields. Using this, we have solved our problem on the 
level of ^-SpecF. However, we have to resolve the problem in M(R) instead 
of ^-SpecF. This means that one has to pull back the information from 
^-SpecF to M(R) via ^-Speci*[M]. This is not an easy task. The main 
difficulty is that there are many open sets in ^-SpecR[M] having the same 
intersection with ^-SpecF. Any two of them differ only by an algebraic subset 
of lower dimension, thus some sort of induction will apply. But, in carrying out 
the details, a great deal of subtle arguments have to be made. All in all, 
Brocker's proof is not easy. 

Nevertheless, this proof demonstrates, once again, that general results from 
the theory of ordered fields can be successfully applied to real algebraic 
geometry via the notion of the real spectrum. 

4. On abstract semialgebraic geometry. In this section we are going to touch 
upon a possible foundation of abstract semialgebraic geometry. This means 
that we want to build up the theory using only constructible subsets of the real 
spectra of some rings. We thus work "abstractly" rather than dealing with the 
"concrete" semialgebraic subsets of some M(R). This procedure, of course, 
parallels the one in classical algebraic geometry where one bases the theory on 
the notion of an affine scheme, Spec A. To develop such an abstract theory 
requires, as is well known, a lot of work and space. Consequently we will only 
present the very beginnings. For more details, we refer to [R, Bru2, S2, S3, D]. 
The paper [S2] of N. Schwartz is especially highly recommended. In particular, 
we will present here his definition of the structure sheaf on a constructible set. 

Before turning to this topic, however, we want to derive various Null- and 
Positivstellens'àtze in the abstract setting of the real spectrum of a ring. This is 
done to emphasize the fact that it is the real spectrum where they can be 
proved most naturally and easily. Again, by applying the correspondence 
between semialgebraic and constructible subsets, we will then obtain the Null-
and Positivstellensatz for semialgebraic sets. See also [St, Brl, CT, L2]. 

Let A denote, as in §2, an arbitrary ring. We want to study the existence of 
orderings a of A with certain prescribed properties. As will be seen from later 
applications, the prescribed properties always amount to assuming that a 
certain quadratic semiring T is contained in <x: T c a. Here, a quadratic 
semiring is any subset of A containing A2 and closed under addition and 
multiplication. Thus HA2 = {E"xf\n e N, xv...9xne A} is the smallest 
quadratic semiring in A. 
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(4.1) PROPOSITION. Let T be a quadratic semiring. There is an ordering 
a G M-SpecA with T c a iff -1 £ T. 

We have as an obvious corollary 

(4.2) THEOREM. ^-Spec4 # 0 iff-It LA2. 

PROOF OF (4.1). Clearly, -1 £ T if T c a. Conversely, assume -1 £ T. Set 
H = 1 4- T. H is a multiplicative semigroup, and we have H O {0} = 0 . By 
KrulPs theorem we find a prime ideal t) which iŝ  maximal among all ideals a 
with H n a = 0 . Let # = QuouM/t)) and F = {£ = s + ç | j e H). We 
claim that # admits an order P with H c P. To prove this we have to show 
that the quadratic semiring of K generated by H does not contain - 1 , see [B, 
(1.2) ff]. Assume on the contrary -1 = Eî^z,2, zt G Kx

9 st G # ; then there are 
y, xl9..., xn G A with j> £ t) and ^ 2 + E ï ^ x 2 G t}. Now, because of the 
maximality of t) and y & t), there are 0 G t), 0 G A, s G /f with I + s = a + 
by. Then Z>2j2 = (1 4- s)2 modt), and from b2y2 4- 0 2 E^x 2 e t) we get 
^ = (1 4- 5)2 + Es^toc,)2 G t)._Clearly, / e l + r = i / , which is a contradic­
tion. Having now this order P o H we set a = { < z G y l | f l 4 t ) G P } . Then 
a G ^-Specv4 and H G a. 

We next turn to the abstract versions of certain Null- and Positivstellens'àtze. 
To have a concrete example consider a semialgebraic set S given by 

S= { x € = M ( J l ) l / i ( * ) - ••* = / r (* ) = 0, gl(x)>09...9gs(x)>09 

hx(x) > 09...9ht{x) > 0} . 
It is natural to ask for a description of functions ƒ G R[M] with ƒ = 0 or 
ƒ > 0 or ƒ > 0 on S9 in terms of the given data / x , . . . , / r , gx , . . . , gs9 hl9...9ht. 
Passing to the abstract setting, we start off with a quadratic semiring T and ask 
for a description of ƒ G A such that f (a) = 0 (or ƒ(«) > 0 or ƒ (a) > 0) 
whenever T c a. In the next three statements (4.3)-(4.5) the ring A and 
quadratic semiring T are kept fixed. 

(4.3) NULLSTELLENSATZ. The following statements are equivalent: 
(i) ƒ(«) = 0 /or Û// a with T e a , 
(ii) ƒ2* + 7 *= 0 for some A; G N, f G T. 

PROOF, (i) => (ii) We consider the quadratic semiring 

I / G N, t G T) T,:-l -4 
r " \ / 2 / | 

in ^ . If a G <%-SpecAf is given we write, by abuse of notation, 

a n A = (a G A \ J G «\ G ^-SpecA 

If - 1 « 7} then, by 4.1, there is an a with 7} c a. But then ƒ(« n A) # 0. 
Hence -1 G 7J., which leads to 

/"li + ^ ï l - o 

for some n91 G N, t G r . We may choose w even to derive (ii). 
(ii) => (i) Since t(a) > 0 and (f(a))2k > 0 we get ƒ(«) = 0. 
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(4.4) STRICT POSITIVSTELLENSATZ. The following statements are equivalent: 
(i) ƒ(«) > 0 for all a with T e a , 
(ii) ft = 1 + s for some t,s e T. 

PROOF, (ii) => (i) If T c a then f(a)t(a) = 1 + s(a\ t(a), s(a) > 0, hence 
f(a)t(a) > 0 and f (a) > 0. 

(i) => (ii) Consider the quadratic semiring T + (-ƒ )T = 7". In case -1 £ 7 ' 
we would find a G ^-Spec4 with T e a , (-ƒ)(«) > 0, i.e. T e a , ƒ(«) < 0: a 
contradiction. Therefore, - 1 e r ' , which means ft = 1 + s for some t,s & T. 

(4.5) POSITIVSTELLENSATZ. The following statements are equivalent: 
(i) / ( a ) > 0 /or a// a wiïA T e a , 
(ii) ƒ* = ƒ 2 k + s /or some A: e N, *, 5 e r . 

PROOF. TO prove (ii) => (i) one argues as above. 
(i) => (ii) Consider the quadratic semiring of Af introduced above. Then 

j(a) > 0 for all a e ^ - S p e c ^ , 7} c a. 

By (4.4), we get 
f 
j • t = 1 + s for some t9s <= 7}. 

Pulling this back to ^4, one obtains (ii) with possibly other t9 s, 

We are now going to derive the "concrete"' version of the last results 
(4.3)-(4.5). This means that we will be dealing with a semialgebraic subset S of 
some affine variety M( JR), where we assume that S is given as described before 
(4.3). Then in terms of the defining functions f v . . . , fn gv...,g5, hl9...9hn 

we want to describe all functions ƒ e R[M] which are equal to zero, or which 
are strictly positive, or which are nonnegative on S. Furthermore, we want to 
give a proof which is based on our abstract solution of such problems, i.e. 
(4.3)-(4.5). That both questions are related is due to the correspondence 
between semialgebraic subsets of M(R) and constructible subsets of 
&-SpecR[M], cf. (3.3). Thus, let Sx denote any one of the following sets: 

{x e M(R)\f(x) = 0}, {x G M(R)\f(x) > 0}, 

{xeM(R)\f(x)>0}. 

By assumption, S c Sx in each of the cases we are dealing with. Since 5 ' c S"' 
implies S' c. S" if S' and S" are semialgebraic, we conclude S c Sl9 i.e. 
ƒ = 0 on S or ƒ > 0 on S or ƒ > 0 on S respectively. So, in order to apply (4.3) 
through (4.5) we have to describe S by a certain quadratic semiring. To this 
end, still using the previous description of 5, let a be the ideal of R[M] 
generated by f l 9 . . . , fr, H be the multiplicative semigroup with unit in R[M] 
generated by hl9...9ht and T be the quadratic semiring in R[M] generated 
by R[M]2 and the functions g L , . . . ,g„ hlL1..9hr Next set B = R[M]/a, 
r = r + a for r e #[M], //_= {A|A e # } , T = {/|* e T}, C = J^ , the ring 
of fractions with respect to i/, and 

* \teT,heH) r-u 
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Using the natural homomorphism 

q: R[M]-* C, a -> j 

and the relation q(a(q*(a))) = q(a)(a) for a G R[M\ cf. (2.13), we obtain 

(4.6) S = q*{a G ^ - S p e c C ^ c a). 

Again by using (2.13), we conclude, in our situation, that ƒ:= q{ ƒ ) satisfies 

f (a) = 0 (or / ( a ) > 0 o r / ( a ) > 0 respectively) 

for a G ^-Spec C with 7\ c a. Now, the previous results (4.3)-(4.5) can be 
applied and we get 

(4.7) NULLSTELLENSATZ. The following statements are equivalent: 
(i))f(x) = 0 for all x G S, 
(ii) hf2k + t<=a for some h G H, k G N, t G T. 

PROOF, (ii) =* (i) First note that, if x G 5, A(JC) = 0 for a G a, b(x) > 0 for 
6 e T, c(x) > 0 for c G if. This proves (ii) => (i). To prove the converse, 
(i) => (ii), we start off with the fact just derived that 

^ ( a ) = 0 for all a G ^-SpecC with 7\ c a. 

From (4.3) we get 

h M + 4 = 0 for certain k G N, h G if, * G T. 

Pulling this back to R[M] we get the desired conclusion (with possibly other h 
and /) . 

The way of reasoning just presented also applies to the other situations: 
ƒ > 0 on S and ƒ > 0 on S. We get 

(4.8) STRICT POSITIVSTELLENSATZ. The following statements are equivalent: 
(i) f(x)> 0 for all x G S, 
(ii) ft = h + s mod a /or some f, s G T, h G ƒƒ. 

(4.9) POSITIVSTELLENSATZ. The following statements are equivalent: 
(ï) f(x)> 0 for all x G 5, 
(ii) ƒ* = hf2k + ^ mod a for some k G N, M G r , /I G ƒƒ. 

We come next to the main part of this section, namely N. Schwartz's 
construction of a structure sheaf on a constructible set [S2, D]. Prior to his 
definition, a structure sheaf on the real spectrum was already introduced by 
M.-F. Roy, a detailed account of which is presented in [R]. Here, however, we 
will concentrate on the sheaf of "abstract semialgebraic functions" defined by 
Schwartz. As its name already indicates, with this sheaf the concept of 
semialgebraic function is transferred to an abstract setting. First recall the 
definition of a semialgebraic map f: Sx -> S2, where St is a semialgebraic 
subset of an affine variety Mt(R), i = 1,2. According to [DK2, Definition 3, 
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p. 179] a map ƒ: Sx -» S2 is called semialgebraic if ƒ is continuous (with 
respect to the strong topology) and the graph of ƒ is a semialgebraic subset of 

In dealing with a constructible subset X of &-SpecA, we clearly want that at 
least the elements of A are to be regarded as abstract semialgebraic functions. 
Given ƒ e A, we may consider, as we did before, ƒ as a "function" on X with 
values in the real closed fields k{a\ a e X, introduced before (2.8). More 
precisely, we assign to ƒ the element 

/ - ( / ( « ) ) . «€ n Ha)=:U. 

The assignment ƒ •-> ƒ is a ring homomorphism 4̂ -» II with image denoted 
by A. Taking this point of view, we next look for overrings of Â in I l a € ^fc(a); 
one of these rings will later on be declared the ring of abstract semialgebraic 
functions on X. In order to impose natural conditions on subrings of II we 
first interpret its elements as certain sections of ƒ?=.ƒ*: &-Spec A[T] -> 
^-Spec^4 where A[T] is the polynomial ring in the variable T and j : A -> A[T] 
is the inclusion. To this end we recall the hpmeomorphism 

<pil(a) £• ^-Spec(A:(a) ®A B) 

of Theorem (2.17). In the present situation we have 

p~\oi) £ * S p e c f c ( a ) [ r ] . 

Now, given a = (a(a))aGXG U, we obtain, for any a e X, the element 
(ma(a)9k(a)2) = : & in &Speck(cW]. Then sa(a):= ƒ,(&) e p-\a). Thus 
we have defined a section sa: X -> p"\X) c â?-Spec^[r] of />: /?_1(^) -* X. 
The question arises how to characterize these sections among all sections of p. 
Here we have 

(4.10) PROPOSITION. The assignment a •-» is a bijection between YlaGX^(a) 
and the set of all sections s: X -» p~\X) ofp such that, for all a G X, the point 
s(a) is constructible inp~1(a). 

REMARK. By abuse of notation, a point ft is called constructible if {/?} is 
constructible, and p~l(a) is written instead of p~l({ot}). 

PROOF. We first note that the only constructible points of ^-Specfc[!T], k a 
real closed field, are the points of k, i.e. the orderings (mx , k2\ x G k. This 
can be seen directly or by using the correspondence between constructible and 
semialgebraic sets, see Theorem (3.3). Next we take into account, as mentioned 
in the proof of (2.17), that z*: <pix(a) *" ^-Spec(k(a) ®A B) constitutes a 
homeomorphism with respect to the Tychonoff topology and that a subset is 
constructible iff it is clopen in the Tychonoff topology. Putting all this together 
we obtain the desired result. 

In the sequel we will often define orderings of A[TV..., Tn] in the following 
way. We start off with an ordering a of A. This ordering induces the 
homomorphism 7ra: A -* k(a). The extensions of ira to A[Tl9...,Tn] with 
values in some real closed field L D k(a) are in one-to-one correspondence 
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with prescribed values lv...yln for Tv...,Tn in L. Thus, given L and 
ll9..., /„ e L we obtain £a by requiring #tt|i4 = 7ra, 7ra(7;) = /,.. Then 
j3 := (#J*(L 2 ) is an ordering of A[TV..., Tn] which extends a. If a e X and 
ƒ G 4̂ are given we want to describe the section sf and the ordering /} = sf (a). 
We get that ly. A[T] -» A:(a) = /c(j8) is induced by V- ^ -» k(a\ T -* f (a). 
In particular, let A = R[M] be the coordinate ring of an affine variety M(R), 
R a real closed field. Let x e M(fl) and a:= (g e 4 | ƒ(*) > 0} (a = $ (* ) 
according to §1). A[T] is then the coordinate ring of M(R) X R and /} = s f (a) 
corresponds to the point (x, f(x)) e M(/^) X R. Thus the section sj, when 
restricted to M(/?) c #-SpecJR[Af], just describes the graph of ƒ. 

Back in our quite general situation, we may also regard sa(X) as the graph 
of the "abstract function" a G Tlk(a). Using this interpretation we will single 
out the ring C( X) of abstract semialgebraic functions by the following restric­
tions: a G C(X)iff 

(i) sa: X -> p~\X) is continuous, 
(ii) sa(X) is constructible and closed in p~l(X). 

These conditions seem to be rather reasonable. However, it is by no means 
obvious that C(X) is a subring of FI a e ^/c(a). In fact the proof will make use 
of all the more difficult results obtained in this paper. 

A similar definition for abstract semialgebraic functions has been given 
earlier by Brumfiel in [Bru2]. But he did not require sa(X) to be closed in 
p~l(X). It was N. Schwartz who discovered the importance of this condition 
and proved the following fundamental theorem. 

(4.11) THEOREM. C( X) is a subring of TlaG *&(a) which contains A. 

The rest of this section, apart from some remarks, will be devoted to the 
proof of (4.11). For clarity, we are going to introduce some intermediate 
concepts and results. 

First, call a section s: X -> p~l(X) "pointwise-constructible", if s(a) is 
constructible in p~l(a) for any a e X By (4.10), these sections are in one-to-one 
correspondence with the elements of n « e *&(«); the bijection being given by 
s~(T(s(a)))aGX. 

We may therefore introduce the sum and product of pointwise-constructible 
sections s and t by setting 

(4 12) />(( ' + ' ) ( « ) ) - « , T((s + t)(a))-T(s(a)) + T(t(a)), 
K' ) p(st{a)) = a, T(st(a)) = T(s(a))-T(t(a)). 

Secondly, we call a section s "constructible" if s(X) is constructible in 
p~l{X). In this case, s(X) is also constructible since p~l(X) is constructible. 
Any constructible section is pointwise-constructible. This follows from (s(x)} 
= p~l(x) n s(X). We therefore may consider the sum and product of con­
structible sections to obtain sections that are at least pointwise-constructible. 
However, we have: 

(4.13) PROPOSITION. With the operations (4.12) the set of constructible sections 
is a ring. 
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PROOF. We consider the A -algebra homomorphism 

a:A[T]^A[Tl9T2]9 T * 7\ + T2, 

m:A[T]-+A[Tl9T2]9 T'-* TXT2. 

Starting off with two constructible sections sl9 s2 we will construct a section 
s = (sl9 s2): X -> <%-SpecA[Tl9 T2] with constructible image such that a* ° s = 
sx + s2 and m # °5 = 5152 holds. Now, in both cases the homomorphisms a and 
m turn A[Tl9T2] into a finitely presented ^4[T]-algebra, since in the case of the 
sum a9 we have A[Tl9 T2] = A[TX + T2,T2]9 and in the case of the product one 
can show 

(A[T1T2])[X1,X2]/(X1X2 - T{T2) ^ A[TltT2]. 

Therefore, Theorem (2.1) applies and shows that (a*°s)(X) = a*(s(X)) and 
(m*os)(X) are also constructible—which is what we wanted to prove. It 
remains, therefore, to construct s. We define s(a)9 a e X9 by the following 
conditions: 

s(a) nA = a9 Tt(s(a)) = T(*,(«)) for i = 1,2. 

Denoting the v4-algebra homomorphism A[T] -» ^4[7\, r2] , 7 -> Tt by <p„ we 
see that (<Pi)*s(a) = ^-(a), * = 1,2. Conversely, assume (<p,)*(y) e 5,(^0 for 
/ = 1,2, y £ ^ - S p e c ^ r ^ T2]9 then (<p,)*(y) = ^(«,-)« Since s, is a section, we 
necessarily get a(. = y n i = : a , independent of /. This implies 7)(y) = 
TX^a)) = T)(^(a)), hence y e $(*) . Thus, we have proved s(X) = 
(<p1);1(51(X)) Pi (cp2)i

1(52(A
r)) and ^(X) is also constructible in view of 

Propositions (2.2) and (2.14). Finally, we have to show a*° s = sx + s29 

m*° s = sxs2. Clearly, pa* = pm* =7* where y: A -» ^[T^, r2] is the natural 
inclusion. Moreover, 

T(aM«))) = a(T)(s(a)) = (7^ + T2)(s(a)) = r (* x (a)) + T(*2(a)) 

and 

r ( m , ( 5 ( a ) ) ) = m ( r ) ( * ( a ) ) = T ^ a ) ) • T(*2(a)) , 

which completes the proof. 
We next have to deal with constructible sections s which are continuous and 

have a closed image s(X) in p~1(X). In order to show that differences and 
products of such sections are again of this type (i.e. that C(X) is a ring), we 
will reformulate the latter two conditions with the help of the places \ia p. 
k(a) -» K U 00, introduced in the first two sections, whenever a, /? with a c j 8 
are given. 

To avoid notational confusion in the sequel, we fix for each a e ^-Spec^l a 
real closure k(a) of k(t)a). Given a c /?, a, /? e ^-Spec^4, we denote by Fa ̂  
the convex closure of Aap in k(a). More generally, we now consider all 
convex valuation rings V of k(a) which dominate Aap9 i.e. which satisfy the 
following conditions: 

(4.14) Aap c V, t)a0 c mK (= the maximal ideal of V). 
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Since convex valuation rings of any ordered field are totally ordered under 
inclusion, see e.g. [L2, (2.6)], there is a smallest one and a largest one among all 
convex valuation rings of k(a) dominating Aap. In fact, Va p is the smallest; 
the greatest one will be denoted by Wap. Given any one of these valuation 
rings, say V, we write kv for its real closed residue class field, and write Xv: 
k(a) -» ky U oo for the canonical place. However, in the case of Va p and Wa p 
we write \ia p, K and Xa p, L instead. Given such a valuation ring V we have 
the diagram 

*(/0 

with a uniquely defined monomorphism iv p. Note that &(/}) is a fixed real 
closure of k(t)p). If V = Wap we set iVp = zaj8. We will use the following 
lemma. 

(4.15) LEMMA. Given a C | 8 and z e k(a), y e k(/i). Then the following 
statements are equivalent'. 

(i) x e Watfi and \a^(x) = iayp{y). 
(ii) For all convex valuation rings V satisfying (4.14), we have x e V and 

M * ) = 'V,/*(J0-
PROOF. We need only prove (i) => (ii). From valuation theory we get the 

existence of a place /i: L -* kvU oo yielding the following commutative 
diagram: 

(4.16) *(M 

Since /« ) i8(^(^)) = Aaj8(y4ai8) c Aaj8(F) we see, in view of the fact that 
Xa,p(V) is integrally closed, that ia,p(k(/i)) is also contained in Xa>p(V). This 
leads to the commutative diagram 

kv\J oo 

HP) 
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as can be seen by an argument similar to the proof of (2.16). From ia p(y) G 
^atfi(Y) w e therefore deduce iVtfi(y) = V>ia,p(y) = MajsC*) = V ( * ) - Since 
iv^(y) * oo we see x G V. 

(4.17) PROPOSITION. Let s be a constructible section. Then the following 
conditions are equivalent'. 

(i) s is continuous ands(X) is closed in p~l(X). 
(ii) For all a ,£ G X, a c j8, we toiw? 21s(a)) e Wa/, W Xa/,(7X.s(a))) = 

iatfi(T(s(P))). 

PROOF, (i) => (ii) Suppose a c /?. Since &(/?) is archimedean over fc(typ) and 
y := 7X$(j8)) e k(P) we find Û , Ô G ^ with b(/3) # 0 and >>2 < a(/S)/b(p). 
Consider 

1/ = | Y e ^-Specyt[r] |ft(y) * 0, T{y)2 < ^ | J . 

£ƒ is open, hence, by the continuity of s, the set s~x(U) is open. Clearly, 
s(/5) G U and /} e s~l(U). Because of a c /? we get a G 5_1(^) from Pro­
position (2.11). This implies b(p),b(a) # 0, r(^(a))2 < a(a)/ft(a) and fi­
nally T(s(a)) G Fa>/8. We construct a homomorphism <p: A[T] -» L by requir­
ing <p|̂  = iatfio irfi' and <p(7) = \a^(T(s(a))). Setting y = y*(L2) we get 
/?y = /? and 5(a) c y. The latter statement follows from the fact that Xa ^ is 
order-preserving. Now y ep~\X) and y G {5(a)}, hence by assumption, 
y G s( X), i.e. y = s(/?). This means there is also a unique A -algebra homomor­
phism \p: A[T] -> /c(j8) with \p\A = m^, y = tp*(A:(j3)2). Now consider cp and 
ia p ° *// =:<p'. We shall show <p = <p'. This implies 

ia>fi(T(s(li))) = «p(T) = Xatfi(T(s(a))), 

which is what we have to prove. 
Clearly <p*(L2) = <p'*(^2) = Y- The maps <p and <p' induce order-preserving 

homomorphisms 

{k(ny),y)^L. 

By construction they coincide on the subfield k(t)p). Since k(t)y) is a finite 
extension—note T(s(fi)) G &(/?)—of k{\)^\ we derive the equality <p = <p', 
hence <p = <p'. For the converse we first show s(a) c s(/?) provided a c j 8 , 
a , £ G X Pick F(T) G s(a), then F(T(s(a))) > 0 in fc(a) and, since Xap is 
order-preserving, ia^(F(T(s(p)))) > 0 in L. Therefore F(T(s(p))) > 0 in 
A:(j8) and i ^T) G s(/}). To prove the continuity of s we may consider only 
open constructible subsets U of p'l(X). Then s~\U) = p(U)\ showing that 
s~x{U) is at least constructible as A[T] is obviously finitely presented over A, 
see Theorem (2.15). In order to prove that s~l(U) is also open we apply 
Proposition (2.11) and check that s~l(U) is closed under generalizations. But 
this follows immediately from the fact that a C j 8 implies s(a) c s(p). It 
remains to show that s(X) is closed in p~l(X). As observed above, the 
preimage ^_1((/) of any constructible set is again constructible. Therefore s is 
continuous in the Tychonoff topology. Since X, being a constructible set, is 
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compact in the latter topology, s(X) turns out to be compact, hence closed in 
the Tychonoff topology. Thus, it remains to show that s(X) is closed under 
specialization in p~l(X). So, consider a e X, s(a) c y , py = /} e X. We 
have the valuation ring V = Vs{d)y in k(s(a)) — k(a) which dominates As(a)y 

and Aap. Therefore Va p c V and 

V-Vt(a)iy
 Xy <K 

^ ( « ) , Y > k(y) 

J 
^ • * ( £ ) 

The ordering y is characterized by the two properties py = /} and r (y) = 
/As(a) y(r(5(a))) = XvT(s(a))). By assumption and (4.15) we also have 
\v(T(s(a))) = iv(T(s(li))). Now this means y = s(j8), hence y G s(X). Thus 
^(X) is closed. 

Now the proof of the main Theorem (4.11) is almost complete. It only 
remains to observe, by using the equivalence of (i) and (ii) in (4.17), that the 
sum and product of two constructible continuous sections with closed images 
are again of this type. This is exactly what we have to prove. 

We will conclude this section and this paper by several remarks. They 
illustrate the importance of N. Schwartz' approach, although this can only be 
hinted at here. The interested reader should not hesitate to consult the 
appropriate papers [S2, S3, D, DK3]. 

First of all, let us mention that there exists a sheaf of abstract semialgebraic 
functions on a constructible set X <z ^-Specv4: Clearly, if Ux c U2 are con­
structible subsets of X then we have the restriction res(.s) of a section s: 
U2 -> ^-Spec4[r] to Uv It is readily checked that res(s) is in C([/x) if 
s G C(U2). One further proves that the assignment U -> C{U\ where U is 
open constructible, together with the restriction maps, determines a sheaf of 
rings on the topological space X. Note that the open constructible subsets of X 
form a basis of the topology of X. In fact, this sheaf turns X into a locally 
ringed space: it is called the structure sheaf of X. 

Classical algebraic geometry is built up with affine schemes Spec ,4 as 
building blocks. Similarly, the constructible subsets together with their struc­
ture sheaf may serve as the affine building blocks for a real algebraic geometry 
in its widest sense. This is done in [S2] where general semialgebraic spaces are 
introduced. These are locally ringed spaces which are locally isomorphic to 
constructible sets with their structure sheaves. In this way we obtain the 
category of abstract semialgebraic spaces in which, as N. Schwartz showed, 
fibre-products exist. Thus, a quite satisfactory theory may be developed. In 
particular, H. Delfs and M. Knebusch's theory of "concrete" semialgebraic 
spaces X over a real closed field R may now be embedded in the somewhat 
more flexible and comprehensive theory of abstract semialgebraic spaces: 
Namely, by extending the operation S •-> S, S being any semialgebraic set in 
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M(R) and S its corresponding constructible set in ^-Speci£[M], to any 
semialgebraic space X in the sense of Delfs-Knebusch, we get an associated 
abstract semialgebraic space X. As demonstrated in [S2, D] several phenomena 
related to X can be more naturally interpreted in terms of X. The most striking 
example is N. Schwartz' solution of the problem of characterizing affine 
concrete semialgebraic S (i.e. S semialgebraic in some M(R)) among all 
concrete semialgebraic spaces. Let us turn to the associated abstract space S. If 
S is affine then S is affine, i.e. S is constructible. In this case Smax (= the set 
of all closed points) is a Hausdorff space, as seen in the second section. It is 
this property that is decisive, since N. Schwartz was able to prove the converse: 
A concrete semialgebraic space is affine iff 5m a x is a Hausdorff space. A really 
marvelous theorem! 
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