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History of the scattering method. The scattering theory of linear differential 
operators is an approach to their spectral analysis which arises from the study 
of wave propagation. The medium in which waves are propagated is regarded 
as a linear system whose input comes from the remote past and whose output 
is given in the distant future. The scattering operator describes the energy-pre­
serving transition from past to future. 

The awareness of a relationship between scattering theory and that area of 
number theory associated with the Riemann hypothesis is at least twenty-five 
years old. It is found for example in an analysis of the Laplace-Beltrami 
operator by Ehrenpreis and Mautner [4] and in a congress address of Gelfand 
[6]. In the same years the author constructed the Hubert spaces of entire 
functions which are used in the present formulation of scattering theory. 

In 1972, Faddeev and Pavlov [5] applied the Lax-Phillips scattering theory to 
the Laplace-Beltrami operator, considered in a space of functions invariant 
under the action of the modular group. An account of their result in English, 
and a generalization, appeared in 1976 in a monograph by Lax and Phillips [7]. 
The important observation is made that the Riemann hypothesis is equivalent 
to decay properties in the wave propagation associated with the operator. But 
no geometric reason could be found for the propagation to have these 

Address delivered at the winter meeting of the American Mathematical Society in Anaheim, 
California, January 1985; received by the editors October 15,1985. 

1980 Mathematics Subject Classification (1985 Revision). Primary 11M26, 47A40. 

©1986 American Mathematical Society 
0273-0979/86 $1.00 + $.25 per page 

1 



2 LOUIS DE BRANGES 

properties. Lax and Phillips clearly do not expect a proof of the Riemann 
hypothesis by these methods. 

The formulation of scattering theory using the theory of Hilbert spaces of 
entire functions is more difficult than in the Lax-Phillips theory because there 
is more structure. Therefore it is understandable that the author's independent 
discovery in 1973 of results related to those of Faddeev and Pavlov obtained 
little attention [2, 3]. 

In the author's formulation, the scattering operator is described by a transfer 
function which is analytic in the complex plane instead of the unit disk or the 
upper half-plane. The reason for accepting the greater structure is that it is 
naturally present in connection with zeta-functions. 

During the months of April, May, and June 1984, the author visited the 
Leningrad Branch of the V. A. Steklov Mathematical Institute under the 
exchange agreement between the National Academy of Sciences and the 
Academy of Sciences of the USSR. It was during this time that he became 
aware of a way of applying the additional structure in connection with the 
Riemann hypothesis. 

The purpose of the present address is to describe this interesting develop­
ment. An expository account is given of the theory of Hilbert spaces of entire 
functions as it applies to the Laplace-Beltrami operator. A conjecture is then 
made in this theory which implies the Riemann hypothesis. 

Hilbert spaces of entire functions. The trouble with talking about Hilbert 
spaces of entire functions is that there is too much to say. An adequate 
motivation of the spaces will necessarily be very lengthy. Those who aim at 
new results in the field do not want to be caught in this familiar trap. 

What does need to be said is that the theory of Hilbert spaces of entire 
functions is an invariant subspace theory for certain linear transformations in 
Hilbert space. The transformations are in general unbounded and partially 
defined. The meaning of "invariant subspace" needs to be clarified. An answer 
is provided by the theory. 

This is a very nice invariant subspace theory because invariant subspaces 
always exist. There are enough for a spectral expansion of the transformation. 
And the natural invariant subspaces are totally ordered. Few other nontrivial 
examples of linear transformations in Hilbert space exist for which the 
invariant subspaces are known and are so usefully applied to the structure 
theory of the transformation. 

The transformation is assumed given in a canonical model, in a form which 
is useful for study. If the transformation is not initially given in that form, then 
it is put in that form under a unitary equivalence which often appears as an 
eigenfunction expansion for a differential operator. 

A terse way to introduce the relevant Hilbert spaces of entire functions is to 
characterize them by these axioms: 

(HI) Whenever an element F(z) of the space has a nonreal zero w, the 
function F(z)(z - w)/(z - w) belongs to the space and has the same norm as 
F(z). 

(H2) The linear functional defined on the space by F(z) into F(w) is 
continuous for every nonreal number w. 
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(H3) The function F*(z) = F(z) belongs to the space whenever F(z) 
belongs to the space, and it always has the same norm as F(z). 

In connection with such a space, one thinks of a transformation, "multipli­
cation by z in the space," which takes F(z) into zF(z) whenever F{z) and 
zF(z) belong to the space. In the language of Stone and von Neumann, 
multiplication by z is a closed symmetric transformation of deficiency index 
(1,1) which is real with respect to a conjugation. The transformation is 
characterized by the fact that multiplication by z - w has a bounded, partially 
defined inverse for every complex number w. 

An example of such a space is obtained from any entire function E(z) 
which satisfies the inequality 

\E(x-iy)\<\E(x + fy)\ 

when y > 0. Write E(z) = A(z) - iB(z) where A(z) and B{z) are entire 
functions which are real for real z, and 

K(w9z) = [B(Z)I(W) - A(Z)B{W)]/[TT(Z - w)]. 

Define J^(E) to be the set of entire functions F(z) such that 

||f||2-/+"V(r)/E(r)|2* 
• ' - 0 0 

is finite and such that the inequality 

\F(z)\2<\\F\\2K(z,z) 

holds for all complex z. Then Jf(E) is a Hilbert space of entire functions 
which satisfies the axioms (HI), (H2), and (H3). The expression K(w, z) 
belongs to the space as a function of z for every complex number w and 

F(w)=(F(t),K(w,t)) 

for every element F(z) of the space. 
Any Hilbert space of entire functions which satisfies (HI), (H2), and (H3) 

and contains a nonzero element is isometrically equal to a space J^(E). 
The referee remarks that the proof of this elementary theorem [1] is an 

instructive exercise for the reader. 
Hint. Find the form of the reproducing kernel for the space. 

Character zeta-functions. Let r be a given positive integer. A character 
modulo r is a function x(«) of integers «, periodic of period r, which satisfies 
the identity x(mn) = x(m)x(n) f° r a ^ integers m and «, and vanishes at 
points which are not relatively prime to r, but does not vanish identically. A 
character is an even or odd function. A character x is said to be a primitive 
character modulo r if it is a character modulo r and if no character modulo s 
exists, s a proper divisor of r, which agrees with x at points which are 
relatively prime to r. The principal character modulo r is the unique character 
modulo r whose values are zero and one. It is primitive only when r = 1. 

The zeta-function ?x(s) associated with a character x modulo r is defined by 

Sx(')~ tx(n)n-. 
« = 1 
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The series is absolutely convergent in the half-plane Re s > 1 and defines an 
analytic function of s. The Euler product 

r*(,) " n i - x(V" 
which is taken over the primes p, implies that the zeta-function has no zeros in 
the half-plane. 

Assume that x is a primitive even character modulo r. Then a complex 
number e(x) of absolute value one exists such that the identity 

e (x)x(«) = - ç E x ( ^ ) c o s J - ^ - J 

holds for every integer n. The theta-function 0x(z) associated with x is defined 
in the upper half-plane by 

+ 00 

0 X ( Z ) = Lx(«)exp(7T/«2zA)-
— oo 

The functional identity 

ex(z) = e(x)yfi/zex(-i/z) 
is a consequence of the Poisson summation formula for the Une. (The square 
root is taken with positive real part.) The functional identity for the correspond­
ing zeta-functions 

(^)s/2ns/2)^(s) = e ( x ) ( lp ) / 2 r( i - i,)fc(i - , ) 
is obtained on passing to Mellin transforms. When x is a nonprincipal 
character, each side is an entire function of s which has constant phase on the 
line Re 5 = \. When x is the principal character, each side is analytic in the 
complex plane except for simple poles at the points s = 0 and s = I. 

The Riemann hypothesis for such a character zeta-function is the conjecture 
that the zeros of the function on the left (or right) are simple and He on the line 
Res = \. 

Note that Riemann stated the conjecture only for the principal character and 
that he did not require simplicity of zeros. The present statement is an addition 
of later authors, and there is no general agreement on this point. It represents 
the author's personal opinion about what is true and provable. 

Hecke subgroups of the modular group. An analytic function of z which 
maps the upper half-plane in a one-to-one fashion onto itself is of the form 

Az + B 
Cz + D 

for real numbers A, B9 C, and D such that AD - BC = 1. Such mappings 
form a group under composition. The group, and certain of its subgroups of 
finite index, have long been recognized as relevant to the study of character 
zeta-functions. 

If r is a positive integer, define T(r) to be the group of mappings of the 
upper half-plane onto itself which are of the form z into (Az + B)/(Cz + D) 
for integers A, B, C, and D such that C is divisible by r and AD - BC = 1. 
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Also of interest is the related group T(r)* generated by T(r) and the mapping 
which takes z into - l / ( r z ) . When r is not one, T(r) is a normal subgroup of 
index two in T(r)*. 

The upper half-plane decomposes into equivalence classes under each group 
action. Points in the upper half-plane are considered equivalent with respect to 
one of these groups if one is obtained from the other under the action of the 
group. 

Another kind of action is also considered. Points z and w in the upper 
half-plane are considered symmetric with respect to T(r)* if z and -w are 
equivalent with respect to T(r)*. 

Examples of points which are self-symmetric with respect to T(r)* are 
points on any vertical Une through a half-integer point on the real axis. 

The action of T(r)* maps points in the upper half-plane which are not 
self-symmetric with respect to T(r)* into points which are not self-symmetric 
with respect to T(r)*. The points in the upper half-plane which are not 
self-symmetric with respect to T(r)* form an open set whose complement has 
zero plane measure. 

A fundamental region B(r) for T(r)* is a connected open subset of the 
upper half-plane, which contains no distinct equivalent points with respect to 
T(r)*, such that the points of the upper half-plane which are equivalent with 
respect to T(r)* to no element of S2(r) form a set of zero plane measure. 

A fundamental region for T(r)* always exists. Enough of the construction 
of such a region will be given to determine what elements of the region are 
self-symmetric with respect to T(r)*. 

A point in the upper half-plane is said to be admissible with respect to T(r)* 
if all points of the same T(r )*-equivalence class which lie at a maximum 
distance from the real axis differ from each other by integers. The admissible 
points with respect to T(r)* form an open set whose complement has zero 
plane measure. The action of T(r)* maps admissible points with respect to 
r ( r ) * into admissible points with respect to r(/*)*. 

Consider the set of admissible points which are not self-symmetric with 
respect to T(r)*. It is an open subset of the upper half-plane whose comple­
ment has zero plane measure. The set is invariant under the action of T(r)*, 
and it is the union of its connected components. The action of T(r)* maps 
each component onto a component. Two components are considered equiva­
lent if they are mapped into each other under the action of T(r)*. 

Certain components are easily identified. A component is said to be dis­
tinguished if its elements lie at a maximum distance from the real axis within 
their equivalence classes. Each component is equivalent to a distinguished 
component. Each distinguished component has, as part of its boundary, two 
vertical half-lines, one-half unit apart, above half-integer points on the real 
axis. 

There are two equivalence classes of components because there are two 
equivalence classes of distinguished components. Two distinguished compo­
nents are considered adjacent if their closures have a nonempty intersection. 
The intersection is then a vertical half-line. Adjacent distinguished components 
are never equivalent. 
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A fundamental region for T(r)* is obtained as the interior of the union of 
the closures of two adjacent distinguished components. The self-symmetric 
elements of the fundamental region are those which belong to the intersection 
of the closures of the two components. 

A fundamental region for T(r) is obtained by a similar piecing together of 
two adjacent fundamental regions T(r)*. 

The Laplace-Beltrami operator. The analytic one-to-one mappings of the 
upper half-plane onto itself are isometries of the upper half-plane, considered 
with its hyperbolic geometry. The Laplace-Beltrami operator is the second-order 
partial differential operator which appears as the Laplacian operator for this 
hyperbolic geometry. It commutes with the group action. Its spectral theory 
appears in the Bargmann decomposition theory of unitary representations of 
the group into irreducible representations. And it also appears in a different 
way in connection with the action of Hecke subgroups of the modular group. 

The Laplace-Beltrami operator is formally defined to take F(z) into G(z) 
where 

The differential operator can be considered in various Hubert spaces in 
which it is selfadjoint. Some of these spaces will now be constructed and 
relations between them will be found. 

If x is an even character modulo r, define &x(r) to be the Hubert space of 
equivalence classes of measurable functions F(z) of z in the upper half-plane 
such that 

for all integers A, B9 C, and D with C divisible by r and AD - BC = 1, and 
such that 

\\F\\\<r) = ffQ\F(z)\2
y->dxdy 

is finite, where £2 is a fundamental region for T(r). The integral does not 
depend on the choice of fundamental region. 

Also consider the Hilbert space ^(oo) of equivalence classes of measurable 
functions F(z) of z in the upper half-plane such that F(z - t) = F(z) for all 
real t and such that 

| | F | | 2 ^ c ) = r \F(iy)\2y-'dy Jo 
is finite. 

The action of the Laplace-Beltrami operator in the space ^(oo) reduces to a 
question in Fourier analysis on the multiplicative group of the positive 
half-line. The operator becomes an ordinary differential operator in this space. 
It is selfadjoint and has an absolutely continuous spectrum. 

The action of the Laplace-Beltrami operator in the space 0*x(r) is consider­
ably more complicated. Information about the operator is obtained from a 
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summation isometry which commutes with the operator. The isometric prop­
erty of summation holds only for nonprincipal characters. Otherwise the 
summation transformation is only a partial isometry. 

THEOREM 1. Assume that x is a nonprincipal even character modulo r. Then 
an isometric transformation exists of the space &{ao) into the space &x{r) which 
takes F(z) into 

where summation is over all pairs of relatively prime integers C and D such that C 
is divisible by r, A and B being corresponding integers such that AD — BC = 1. 
The adjoint transformation of @*x(r) into ^(oo) is a partial isometry which takes 
F(z) into 

fl F(z-t)dt. Jo 

The summation which is used to define the isometry need not be absolutely 
convergent. But it is absolutely convergent almost everywhere under the 
hypothesis that 

f \F(iy)\y-2dy Jo 

is finite. The transformation is otherwise defined by continuity in the Hilbert 
space norms. 

Because of the summation isometry, a part of the spectrum of the Laplace-
Beltrami operator in ^ x ( r ) is subject to an elementary spectral analysis. This is 
the part of the spectrum which lies in the range of the summation isometry. 
There is also a part of the spectrum about which the summation isometry gives 
no information. This is the part of the spectrum which lies orthogonal to the 
range of the summation isometry. This reducing subspace for the Laplace-
Beltrami operator in ^ x ( r ) is the set of elements F(z) of the space such that 
{Q F(Z — t) dt = 0 almost everywhere. The restriction of the Laplace-Beltrami 
operator to the orthogonal complement of this subspace has absolutely con­
tinuous spectrum. 

PROOF OF THEOREM 1. Consider any measurable function F(z) of z in the 
upper half-plane such that F(z - t) = F(z) for all real numbers t and such 
that /0°° \F(iy)\y-2dy is finite. Then the sum 

is absolutely convergent almost everywhere and the inequality 

jjQ\G(z)\y-*dxdy 

4^fi\F(Èrî)\y-2dxdy-Ç\F^y-2dy 
is satisfied. 
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The notation Ö is used for a fundamental region for the group T(r). The last 
identity is due to the fact that, for suitable choices of A and B, the region £2 is 
the image of a subregion of the half-strip - \ < Rez < \ under the transfor­
mation which takes z into (Az + B)/(Cz + D). These subregions are disjoint 
and essentially fill the portion of the half-strip which lies above the real axis. 

The principal step in the proof of the theorem is the verification of the 
identity 

F(z) = f1 G(z-t)dt. Jo 
This is done by a term-by-term integration of the sum defining G(z), which is 
permissible by the previous discussion of its convergence. It is sufficient to 
show that 

H^i^Üï) * = 0 

whenever C is a positive integer which is divisible by r and summation is over 
the integers D which are relatively prime to r, A and B being corresponding 
integers such that AD - BC = 1. Indeed the sum is equal to 

Ex(«)J - ^ , * 

where summation is over the integers n which are relatively prime to r. The 
sum is zero because x is assumed to be a nonprincipal character modulo r. 

The isometric property of the summation is now obtained by the same 
decomposition of the upper half of the strip - \ < Rez < \. This gives the 
identity 

f \F(iy)\2y-2dy= r f F(z)G(z)y-*dxdy 

-5lx(»)/4'(#T5)5(')j'-,*+ 
-JjfjEx(^(£±£)G(;)r^* 

The computation of the adjoint of the summation transformation is now 
made by a similar argument. Assume that F(z) and G(z) are as above with 
F(z) in ^(oo) and G(z) in^ x ( r ) . Then the identity 

r F F(z)H(z)y-2dxdy= ff G(z)H(z)y-2dxdy 

holds for every element H{z) of @x(r). This completes the proof of the 
theorem, since the left side can be written 

ƒ F(iy) H{iy-t)dty-2dy. 
Jo Jo 
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Existence of the scattering operator. The transformation which takes F(z) 
into F(-l/rz) is an isometry of 0*x(r) into ^(r). The transformation is well 
behaved with respect to the ranges of the summation isometries if x is a 
primitive character modulo r. 

THEOREM 2. Assume that x is a primitive even character modulo r, r not one. 
If F(z) belongs to &(oo\ then a unique element G(z) of ^(oo) exists such that 

where summation is over all pairs of relatively prime integers C and D such that C 
is divisible by r, A and B being corresponding integers such that AD — BC = 1. 
The identity 

e(x)rix/2(^f + lX)/2T((l + i*)/2)?x(l + «)/°° F(it)t^3^t 

= (^)(1~")/2r((l - ijc)/2)fx(l - ix)f°° G(it)t<-tx-Wdt 

holds for almost all real x. 

PROOF OF THEOREM 2. The proof is an application of the Poisson summation 
formula in the plane. Use is made of the identity 

f + oo , + 00 [<na2\uz + v\ \ ,- .t , _ . v , , 
ƒ i exp ! - exp(27n£w 4- Lfnii\v)dudv 

J—oo •'—oo ^ y j 
1 / ir\ijz-è\2\ 

= — e xP " — ï — \> 
a \ ay ) 

which holds for all real numbers £ and TJ when a > 0 and z = x + iy is in the 
upper half-plane. By the Poisson summation formula, 

E E ƒ("*>") exp 
— oo — oo \ ^ 

+ 0° +0° 1 / 77|mz + « r 
E E g ( m , « ) — e x p 

a" \ ra2y J 

whenever f(m,n) and g(m,n) are functions of integers m and « modulo r 
such that 

r r 

rg{m,n) = E E /(w>i>)exp(27rzmtt + 2irinv). 
w = l v = l 

The identity is used with f(m,n) = x(n)fi when w is divisible by r and 
f(m,n) = 0 otherwise. Then g(m, n) = e(x)x(m)« 

Fundamental examples of functions F(z) and G(z) which satisfy the 
hypotheses of the theorem are given by 
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and 

G(x + *» = e(x)-

vr*»-2-ayr \cfry t 

for a positive number a. They belong to ^(oo) because of the functional 
identity for the theta-function. The previous application of the Poisson summa­
tion formula in the plane shows that 

ira2\rmz + n\ 1 

ry 
|2 \ 

i E x ( W ( f i | ) = i l I x W e x p ( -
x ' — o o — o o \ 

1 + 0 0 + 0 0 1 / l i 

2 -oo -oo a Vr \ 02O> / 

- ï^Hé^)-
The desired identity follows since 

/•oo / r \ (1 —ix)/2 

ƒ F(iOï<"-3>/2<ft-2a-1 +"(^J r( ( l - ex)/2)fx(l - ix) 

and 

( l - i*) /2 

f 
= 2a"1 -i*r-

ix'\ Kx)(£) r((i - «)/2)fx(i - «). 

The theorem now follows by linearity and continuity since the finite linear 
combinations of such special functions are dense in ^(oo). 

The transformation constructed in Theorem 2 has a geometric interpreta­
tion. Waves are propagated through a medium. At first the waves flow 
uniformly downwards along vertical lines. This propagation is made using the 
Laplace-Beltrami operator in ^(oo). Then the waves enter a closed box against 
whose walls they are reflected. This propagation is made using the Laplace-
Beltrami operator in &x(r). Then the waves come out of the box and flow 
uniformly upwards on vertical lines. This propagation is again made using the 
Laplace-Beltrami operator in ^(oo). 

The transformation constructed in Theorem 2 describes the transition from 
the initial downward flow to the final upward flow. 

Computation of the scattering operator. A computation of the transformation 
of Theorem 2 is easily made. The notation <p(r) is used for the number of 
integers modulo r which are relatively prime to r. 

THEOREM 3. Assume that x w 0 primitive even character modulo r, r not one. 
For positive numbers t9 define 

M0-Iy ( w ) x ( w ) J — , 

file:///cfry
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where summation is over the positive integers n such that n2 < t. Let F(z) and 
G(z) be elements of ^(oo) such that 

î£«»H&r§)-ïEx(iM££)-
where summation is over all pairs of relatively prime integers C and D such 
that C is divisible by r, A and B being corresponding integers such that 
AD - BC = 1. Then 

The integral is interpreted as a limit in the mean square sense of ƒ*. 
PROOF OF THEOREM 3. By the interpretation of the integral, it is sufficient to 

establish the identity in the case that F(iy) vanishes for small y. In this case 
the integral 

r \F(iy)\y-2dy Jo 

is finite. As in the proof of Theorem 1, the condition allows the interchange of 
summation and integration which follows. By Theorem 1, 

^ / • \ /"I l r / 7Ï\ J A ~ Brz + Brt \ J 

l r , ^ fi / A - Brz + Brt \ , 

= f *MxMpF( aa *?,,,)* 
„_i » }-<* \ r2t2 + r2n2y21 

The last interchange of summation and integration is possible because F(iy) 
vanishes for small y. This makes the sum contain only a finite number of 
nonzero terms. The theorem follows. 

An estimate of Mellin transforms results. 

THEOREM 4. Assume that x w a primitive even character modulo r, r not one. 
Then 

Wx(z) = r" 1 / 2 / 0 0 kx{t)t^-^2dt 
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is analytic and bounded by one in the upper half-plane. The identity 

( r \(l-iz)/2 
( £ ) r ( ( l - iz)/2)Sx(l - iz)Wx(z) 

/ r \(l + iz)/2 
= e ( x ) ( ^ ) r ( ( l + iz)/2)Sx(l + iz) 

holds in the upper half-plane. 

PROOF OF THEOREM 4. If F(z) and G(z) are elements of ^(oo) such that 

then the identity 

r G{it)&iz~^2dt 

= riz/2Wx(z) f°° F{it)t^iz-^2dt 

holds for almost all real z = x by the mean square theory of the Mellin 
transformation. The identity given in the statement of the theorem now follows 
for almost all real z = x by the identity in the statement of Theorem 2. Since 
the transformation which takes F(z) into G(z) is isometric in ^(oo) by 
Theorems 2 and 3, the function Wx(z) has absolute value one almost every­
where on the real axis by the mean square theory of the Mellin transformation. 
Since Wx(z) is the Mellin transform of a function which vanishes in the unit 
interval, W (z) is the boundary value function of a function which is analytic 
and bounded by one in the upper half-plane and satisfies the same identities in 
the half-plane. This completes the proof of the theorem. 

Spectral theory. Since Wx(z) is not a constant of absolute value one, the 
strict inequality 

\Wx(z)\<l 

holds in the upper half-plane. When a > 1, define 

Ex(a,z) = a-»"(lf~")/2T((l - « ) / 2 ) f x ( l - iz). 

Since 

\Ex(a9x - iy)\ <\Ex{a,x + iy)\ 

when y > 0, a space Jf?(Ex(a)) exists. The space appears in a precise 
description of the spectral properties of the Laplace-Beltrami operator. 

THEOREM 5. Assume that x is a primitive even character modulo r, r not one, 
and that a > 1. Let F(z) and G(z) be elements of ^(oo), which vanish for 
y > ar~l/2

9 such that 
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where summation is over all pairs of relatively prime integers C and D such that C 
is divisible by r, A and B being corresponding integers such that AD - BC = 1. 
Then a corresponding element H(z) of Jf?(E^(a)) exists such that the identities 

H(z) = E^l,z)jar'l/1 F{it)&iz~^2dt 

and 
„ _ 1 / 2 

hold when y > 0. The identities 

H(-z) = ë(x)Ex(l,z)farl/2 G(it)t^~^dt 

4w|| F ||^(oo) = || H ||3r<Ex<«)) = 4*r|| G | |* (0o) 

are satisfied. Every element of Jf?(E^(a)) is equal to such a function H(z) for 
unique such elements F(z) and G(z) of ^(oo). 

PROOF OF THEOREM 5. The proof is another application of the mean square 
theory of the Mellin transformation. Consider the transformation which takes 
F(z) into 

f(z) = (ar'1/2 F(it)&iz-^2dt 
Jo 

when F(z) is an element of ^(oo) which vanishes for y > ar~l/2. The set of 
such functions f(z) is the set Jf(ar~1/2) of functions f(z) which are analytic 
and of bounded type in the upper half-plane, with square integrable boundary 
value on the real axis, such that the inequality 

holds in the upper half-plane. 
Consider an element F(z) of ^(oo) such that the corresponding element 

G(z), defined as in Theorem 2, vanishes when y < ar~l/2. Then the identity 

far'l/2 F{it)&iz~^2dt = r'^WJz) H G(it)t^z-^2dt 

holds in the upper half-plane. The set of functions g(z) which are of the form 

g(z)f° G(it)t«-Wdt 

for such a function G{z) is the set Jt{a~lrl/1) of functions g(z), analytic and 
of bounded type in the upper half-plane, which have square integrable boundary 
values on the real axis, such that the inequality 

,2 a~yry/2 r + 0° . / x .2 2 a yr*' /•-TOO 2 

4 ?ry 

holds in the upper half-plane. 
The spaces Jt(ar~l/1) and Jf(a~lrl/2) are considered in the metric of 

L2(-oo, + oo) for the boundary value functions on the real axis. Multiplication 
by riz/2W^(z) is an isometric transformation of Jt(a~xrl/2) into Jt(arl/1). 
The orthogonal complement of the range of the isometry is a Hilbert space of 
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functions which are analytic in the upper half-plane. The theorem follows 
because multiplication by 

/ r \(l-iz)/2 

(J) r((i - iz)/2)s-x(i - iz) 

is an isometric transformation of the space onto 3V(E^(a)). 

The Riemann hypothesis. This expansion in the theory of Hubert spaces of 
entire functions is similar to the result of Faddeev and Pavlov, but is obtained 
by a different method. The issue of the Riemann hypothesis is a natural one to 
raise in the formulation of the expansion using Hubert spaces of entire 
functions. 

In the present expansion, special spaces Jf(E) appear for which E(z - i) 
and E*(z) are linearly dependent. The existence of such a linear relation is 
equivalent to the functional identity for the character zeta-functions which 
appear in that context. 

An equivalent statement of the condition is that E(z) has constant phase on 
the line z = z + i. The issue of the Riemann hypothesis is the question of 
whether the zeros of E(z) are simple and he on the line. A similar question can 
be asked for any space Jf(E) such that E(z - i) and E*(z) are linearly 
dependent. 

The answer in general is no. If E(z — i) and E*(z) are linearly dependent 
for a space Jf?(E)9 then it is not necessarily true that the zeros of E{z) are 
simple and lie on the desired Une. All that can be said is that the zeros of E(z) 
lie in the strip - 1 < y < 0 and that they are symmetrically placed about the 
line through the center of the strip. 

To see this, it is sufficient to consider examples in which E(z) is a 
polynomial. The condition that a space 3^{E) exists is that E(z) has no zeros 
above the real axis and at least one zero below the axis. The condition that 
E(z - i) and E*(z) are linearly dependent is the condition that the zeros of 
E(z) are symmetrically placed about the Une y = - \. The zeros are not 
subject to any other constraint. No analogue of the Riemann hypothesis is true 
when no further condition is imposed. 

The question then arises as to what this additional condition should be. The 
answer which is now given is a condition which does imply that the zeros lie 
where they are wanted. But it is a stronger condition. It is possible for the zeros 
to lie on the desired line and to be simple without having the condition 
satisfied. Nevertheless the condition is a natural one to impose for the desired 
purpose. No weaker condition of the same kind seems to be available. 

A statement of the condition will now be made, and it will be shown that it 
has the desired implications. 

THEOREM 6. Assume that Jff(E) is a given space such that E(z — i) and 
E*(z) are linearly dependent. If the real part (F(t + /), F(t)) is nonnegative 
whenever F(z) is an element of the space such that F(z 4- i) belongs to the space, 
then every zero w of E(z) such that neither w nor w + i is real, and such that 
E(w + /) is not equal to E(w — /), is simple and lies on the line w = w + i. 
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PROOF OF THEOREM 6. Note that 

_ E(z)E(w)-E*(z)E(w) 
K{W>Z> ' 2m(w-z) 

for any space Jf(E). The identity has interesting consequences when E(z - i) 
and E*(z) are linearly dependent. If w is a zero of E(z)9 then the identity 

E(w 4- i)K(w, z + i) = -Ë(w - i)K(w 4- i, z) 

is satisfied. When w is not real, K(w9 z) cannot be identically zero and 
E(w — i) is nonzero. When w 4- / is not real, K(w 4- /, z) cannot be identi­
cally zero and E(w 4- /) is nonzero. When w is such a zero of £(z) , the 
identity produces a nontrivial element F(z) of the space such that F(z 4- i) 
belongs to the space. If F(z) is any element of the space such that F(z 4- /) 
belongs to the space, then 

(F{t + i) , K(w9 0> + (F(t)9 K(w, t 4- i)> 

E(w + i) - E(w - i) „ , . 
= — -j ^ -F(w 4- i). 

E(w + i) v ' 
The inner product is taken in the metric of Jf(E). 

For the interpretation of the identity, consider the scalar product defined by 

(F(t + i),G(')) + (HOM* + 0) 
on elements F(z) and G(z) of the space such that F(z + /) and G(z 4- /) 
belong to the space. Then the functions of the form K(w, z), where w is a zero 
of E(z)9 form an orthogonal set with respect to the scalar product. This is true 
since K(w, z + /) vanishes at the zeros of E(z) other than w -i if w is a zero 
of E{z). If, on the other hand, w is a zero of E(z) such that w = w —/, then 
the identities 

K(w,w + i) = —v \ \ ~̂ 

and 

^/ • x E'(w)E(w + i) 

are satisfied. They imply the identity 

K(w,w + i) + K(w + i,w) = E'(W)Ë{w-i\-È{w + i). 

Because of these identities, it becomes interesting to make use of the 
hypothesis that the scalar product is nonnegative. By hypothesis, the expres­
sion 

(K(w,t + i),K(w9t)) + (K(w9t),K(w,t + i)) 

= K(w9w + i) + K(w 4- i9w) 

is nonnegative. If it is possible, then it follows immediately that w = w - i and 
that E'(w) is nonzero. In this case, w is a simple zero of E(z) which lies on 
the desired line and E(w 4- i) is not equal to E(w - i). 
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It remains to consider the possibility that the last expression is zero. By the 
Schwarz inequality, the expression 

(F(t + f ), K(w, 0 ) + < F ( 0 , K(w91 4- 0 ) 

is zero for every element F(z) of the space such that F(z 4- i) belongs to the 
space. By the above computation of the expression, the quantity 

[E(w + i) - E(w - i)]F(w + i) 

vanishes for every element F(z) of the space such that F(z 4- i) belongs to the 
space. Since E{w + i) is not equal to E(w - i) by hypothesis, F(w + i) 
vanishes for every element F(z) of the space such that F(z 4- i) belongs to the 
space. 

Since neither w nor w 4- i is real by hypothesis, F(z)/(z - w - i) is again 
such an element of the space whenever F(z) is such an element of the space. A 
contradiction is obtained since iteration produces an element F(z) of the space 
such that F(z 4- i) belongs to the space but such that F(w 4- i) is nonzero. 
This completes the proof of the theorem. 

If the stronger hypothesis is made that the real part of (F(t 4- i), F(t)) is 
positive whenever F(z) is a nonzero element of the space such that F(z + i) 
belongs to the space, then E(z) has no zero w such that w or w + i is real or 
such that E(w 4- /) = E(w - i). This stronger hypothesis holds if sufficiently 
many zeros of E(z) are simple and lie on the desired line. 

THEOREM 7. Assume that J(?(E) is a given space such that E(z - i) and 
E*(z) are linearly dependent and such that the real part of (F(t 4- /), F(t)) is 
nonnegative whenever F(z) is an element of the space such that F(z 4- i) belongs 
to the space. If every element of the space belongs to the closed span of the 
functions of the form 

E{z) 
z — u> ' 

where w is a zero of E(z) such that neither w nor w 4- i is real and such that 
E(w 4- /) is not equal to E(w — i), then the real part of (F(t + /), F(t)) is 
positive whenever F(z) is a nonzero element of the space such that F(z + /) 
belongs to the space. 

PROOF OF THEOREM 7. Assume that F(z) is an element of space such that 
the real part of (F(t 4- i),F(t)) is zero. If w is a zero of E(z) such that 
neither w nor w + / is real and such that E(w 4- /) is not equal to E(w — z), 
then F(w 4- /) vanishes by the proof of Theorem 6. Thus F(z) is orthogonal in 
the metric of Jf(E) to 

w x E(z)E(w 4- i) 
K{w + i,z)= ; \(

 V r 2 , 
2m(w - z) 

where E(w 4- /) is nonzero because w + i lies in the upper half-plane. Since 
the space is assumed to be the closed span of such functions, F(z) vanishes 
identically. This completes the proof of the theorem. 
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The hypotheses of Theorems 6 and 7 are conjectured to apply to the 
function E (a, z) when x is a primitive even character modulo r, r not one, 
and o = 1. 
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