REALIZING SYMMETRIES OF A SUBSHIFT OF FINITE TYPE BY HOMEOMORPHISMS OF SPHERES

BY J. B. WAGONER¹

Let A be a finite, irreducible, zero-one matrix and let $\sigma_A: X_A \to X_A$ be the corresponding subshift of finite type $[\mathbf{F}]$. Recall from $[\mathbf{F}]$ that a Smale diffeomorphism is one with a hyperbolic zero-dimensional chain recurrent set. A well-known theorem of Williams-Smale $[\mathbf{Wi}]$ says that there is a Smale diffeomorphism $F_A: S^3 \to S^3$ so that σ_A is topologically conjugate to the restriction of F_A to the basic set of index one occurring as part of the spectral decomposition. Let $\mathrm{Aut}(\sigma_A)$ denote the group of symmetries of σ_A —that is, the group of homeomorphisms of X_A which commute with σ_A . Here is the corresponding global realization result for these symmetries.

THEOREM. Assume 4 < q and let 1 < e < q - 2. Then there is a Smale diffeomorphism $F_A: S^q \to S^q$ with a basic set Ω_e of index e (along with other basic sets of index 0, e+1, q) together with a topological conjugacy between σ_A and $F_A|\Omega_e$ so that, given any symmetry g in $\operatorname{Aut}(\sigma_A)$, there is a homeomorphism $G: S^q \to S^q$ satisfying

- (A) G commutes with F_A on all of S^q ,
- (B) $G|\Omega_e = q$ under the identification between $\operatorname{Aut}(F_A|\Omega_e)$ and $\operatorname{Aut}(\sigma_A)$.

The motivation and the idea for the proof of this geometric result came by analogy from algebraic K-theory and pseudo-isotopy theory. The proof uses Williams' notion of strong shift equivalence $[\mathbf{W1}, \mathbf{F}]$, the contractible simplicial complex P_A of topological Markov partitions for σ_A $[\mathbf{W1}]$, and structural stability for Smale diffeomorphisms $[\mathbf{R}, \mathbf{Ro}]$. We would like to thank C. Pugh for useful discussions about the stability theorem.

The group $\operatorname{Aut}(\sigma_A)$ is often rather large. For example, $\operatorname{Aut}(\sigma_2)$ for the Bernoulli 2-shift σ_2 has been known [H] for some time to contain every finite group and to have elements of infinite order not a power of σ_2 . Recently, Boyle and Lind have shown it contains the free nonabelian group on infinitely many generators. Therefore, the group of homeomorphisms of S^q commuting with a certain F_2 is large when 4 < q. Incidentally, at the present time not much is really known about the structure and other algebraic or homological properties of $\operatorname{Aut}(\sigma_2)$. For some information see [BK] or [W1]. An open and long-standing conjecture is that $\operatorname{Aut}(\sigma_2)$ is generated by σ_2 and elements of finite order.

Here is a rough idea of the proof of the Theorem. The details will appear in [W2]. Let P be an $m \times m$ zero-one matrix and let Q be an $n \times n$ zero-one matrix. Suppose there is an $m \times n$ zero-one matrix R and an $n \times m$ zero-one

Received by the editors September 30, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 34C35, 20B27.

Partially supported by the NSF.

matrix S so that P=RS and Q=SR. As in [Wi], this determines a specific conjugacy $c_R:(X_P,\sigma_P)\to (X_Q,\sigma_Q)$ sending $x=\{x_i\}$ in X_P to $c_R(x)=\{c_R(x)_i\}$ in X_Q , where $c_R(x)_i$ is the unique k such that $R(x_i,k)S(k,x_{i+1})=A(x_i,x_{i+1})=1$. Similarly for c_S . In fact, $c_Sc_R=\sigma_P$ and $c_Rc_S=\sigma_Q$, so that $c_R\sigma_P=\sigma_Qc_R$ and $c_S\sigma_Q=\sigma_Pc_S$. We call c_R and c_S elementary symbolic conjugacies.

On the topological side, let $S^q(m)$ be the standard q-sphere equipped with a fixed handle decomposition with one handle of index zero, m handles of index e, m cancelling handles of index e+1, and one handle of index q. Similarly for $S^q(n)$. One then constructs a Smale diffeomorphism $C_R \colon S^q(m) \to S^q(n)$ which is fitted both on the handles of index e and the handles of index e+1 according to the geometric intersection matrix R. Again, similarly for C_S . This is done in such a way that the composition $D_P = C_S C_R \colon S^q(m) \to S^q(m)$ is also a Smale diffeomorphism fitted on the e-handles and (e+1)-handles according to the matrix P = RS and $D_Q = C_R C_S \colon S^q(n) \to S^q(n)$ is fitted according to Q = SR. Observe that $C_R D_P = D_Q C_R$ and $D_P C_S = C_S D_Q$, and therefore C_R and C_S are smooth conjugacies between D_P and D_Q . We call these elementary smooth conjugacies.

Now consider a Smale diffeomorphism $F_P: S^q(m) \to S^q(m)$ which is fitted on the e-handles and (e+1)-handles by the matrix P. In general, of course, $F_P \neq D_P$. However, under the assumption that 1 < e < q-2 we are able to carefully construct F_P , C_R , and C_S in such a way that there is a one-parameter family of Smale diffeomorphisms $F_P(t)$, each of which is fitted on the e-handles and (e+1)-handles by the matrix P, so that $F_P(0) = F_P$, $F_P(1)$ is equal to D_P on a neighborhood of the (e+1)-skeleton, and both $F_P(1)$ and D_P have the point at infinity as a source. Methods of stability theory $[\mathbf{R}, \mathbf{Ro}]$ can then be used to produce a topological (not smooth) conjugacy between F_P and D_P . We call this a stability conjugacy. Similarly, there is a stability conjugacy between D_Q and F_Q , so that we then get a topological conjugacy F_P and F_Q .

The main theorem is proved by first showing that any symmetry g in $\operatorname{Aut}(\sigma_A)$ can be obtained as the composition of a chain of elementary symbolic conjugacies and powers of shifts, and then by showing this can be mirrored compatibly with a corresponding chain of elementary smooth conjugacies, stability conjugacies, and powers of certain intermediate F_P for different matrices P. The chain starts with the original F_A which is fixed and eventually comes back to it. The composition of the various conjugacies and powers of F_P in the chain give the required homeomorphism G.

The main theorem may well be valid on S^4 also, but our argument seems to require 4 < q.

REFERENCES

[BK] M. Boyle and W. Krieger, *Periodic points and automorphisms of the shift*, preprint, Univ. of Maryland/Inst. Angew. Math. der Univ. Heidelberg, 1985.

[F] J. Franks, *Homology and dynamical systems*, CBMS Regional Conf. Ser. in Math., no. 49, Amer. Math. Soc., Providence, R.I., 1982.

[H] G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375.

[R] J. Robbin, A structural stability theory, Ann. of Math. (2) 94 (1971), 447-493.

[Ro] C. Robinson, Structural stability for C¹ diffeomorphisms, J. Differential Equations 22 (1976), 28-73.

 $[\mathbf{W1}]$ J. B. Wagoner, *Markov partitions and* K_2 , preprint, Univ. of California, Berkeley, 1985.

[W2] ____, Realizing symmetries of a shift, preprint, Univ. of California, Berkeley, 1985.

[Wi] R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata 99 (1974), 380–381.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720