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DYNAMICS OVER TEICHMÜLLER SPACE 

BY WILLIAM A. VEECH1 

1. Introduction. Let p, n > 0 be such that 3p — 3 -f n > 0, and let 
Tp,n be the TeichmüUer space of marked closed Riemann surfaces of genus 
p with n punctures. (See [1] for definitions and references.) Equipped with 
the TeichmüUer metric, 7^,n is a straight line space: through each pair of 
distinct points there passes a unique isometric copy of R [3]. It is also known 
these "TeichmüUer geodesies" are the projections in 7J>,n of orbits of a geodesic 
flow, the geodesic flow on the unit cotangent bundle, <2p,n> relative to a Finsler 
metric [9]. 

If r : Qp,n —• TPyn is the cotangent bundle projection, each q £ Qp,n may 
be identified as a holomorphic quadratic differential of finite norm on any 
surface in the class of r(q) G TPyn. Moreover, this differential extends to be 
meromorphic on the closed surface with at worst simple poles at the punctures. 
While the choice of surface is not canonical, the singularity pattern of the 
differential is. That is, we may attach to q a "divisor" o = &(q) = (A;, i/, £), 
where k is the number of poles, v{j), j > 1, is the number of zeros of order 
j , and £ = +1 or — l a s (any representative of) q is or is not the square of a 
1-form. 

Given a as in the previous paragraph, we consider the set Q.p,n{?) of q' G 
<2p,n which have o(q') = a. With obvious notation it is a consequence of 
the TeichmüUer theorem that QPiTl{cr) is invariant under the geodesic flow. 
Let T = r(p, n) be the mapping class group (modular group) of a closed 
oriented surface of genus p with n punctures. T acts canonically on Q^n{o~), 
and <2p\n(0") denotes the "moduli space", QPjTl{o) = 5p5n(^)/r. The geodesic 
flow commutes with T and projects to a flow on Q.p,n(v). We shall describe 
briefly the results of [11-13]: On each component of Q.p,n{cr) the geodesic 
flow is "measurably Anosov" with metric entropy a simple function of a. A 
closing lemma yields a lower bound for the growth of the "TeichmüUer length 
spectrum". 

2. F-structures. It is possible to realize the spaces Tp,n and £p ? n as 
spaces of classes of atlases. To be more precise, let Mp,n be a fixed closed 
oriented surface of genus p with n punctures, the puncture set denoted by Sn = 
{SJ\ 1 < j < n). H(p,n) (resp. Ho{p,n)) denotes the group of orientation-
preserving homeomorphisms <p of Mp such that (pSn = Sn (resp. such that <p ~ 
Id(rel5n)). Of course, T — H(p,n)/Ho(p,n). Let Cp be the set of maximal 
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atlases of complex structures on Mp consistent with the given orientation. If 
U G Cp and <p G H{p,n), then U<p = { ( ^ _ 1 ^ , ƒ o <p)\ ([/,ƒ) G U} G Cp. The 
Teichmüller space is given by 

(2.1) TPtn = Cp/Ho(p,n). 

Let F be the group of transformations of C of the form z —> ±z + c. By 
an F-structure £ = (IV, N) on Mp shall be understood a cofinite set N Ç Mp 

and atlas 74̂  on iV whose transitions lie locally in F and are compatible with 
the given orientation on Mp. It is assumed the pair TV, AT is maximal for 
these properties. Because the transitions belong to F, objects on C which are 
preserved by F lift to N. Thus we associate to £ (a) a complex structure J(£), 
i.e., extension of W to a maximal atlas with complex analytic transitions; 
(b) Riemannian flat metric #(£); (c) nowhere zero holomorphic quadratic 
differential r(£) (pullback of dz2)\ (d) geodesic distance function d$(-,-) for 
g{£)\ and (e) volume element V and norm ||£|| = V(N). We say £ is admissible 
if the d̂  -completion of N is Mp. Let Q(p) be the set of admissible F structures 
on Mp. It may be seen that if £ = ÇW, N) G fi(p), then J(£) Ç Ü for a unique 
U E Cp. Moreover, r(£) extends to a £/-meromorphic quadratic differential on 
Mp with at worst simple poles. Now we define fi(p, n) C fi(p) to be the set 
of £ such that the poles of T(£), if any, lie in Sn (§1). n(p, TI) is stabilized by 
H(p,n)(£<p = (!!><£, <p-1iV), and we set up the space £p ? n = Q(p,n)/Ho{p,n). 
There is a canonical identity 

One inclusion has been indicated above; the reverse inclusion stems from 
associating to a quadratic differential its atlas of "natural parameters". 

The Teichmüller metric is defined in terms of the quasiconformal dilata­
tion, which in one form (circular dilatation [4]) measures how far a map is 
from being, infinitesimally, a complex affine motion. With F-structures coor­
d ina t ing domain and range (modulo a finite set), one introduces a measure, 
ai£11^2)1 of how far Id is from being, infinitesimally, an element of F [11]. 
In terms of a we define A)(£i> £2) = inf a(£i, £2^)» V £ Ho(p,n). It is easy 
to see that the infimum is realized and that Do projects to a metric D on 
£p>n. One finds that (JZPin,D) is a complete metric space. Moreover, if a is 
a divisor as in §1, %p,n(o) is an open and closed set. If o = (fc, 1/, e), define 
JV(a) = 2p + fc + £ i/(y) + (e - 3)/2. 

2 .3 . THEOREM. Let a be such that Qp,n{<r) ^ 0- ZP,n(v) admits an 
atlas of an N(a)-dimensional affine complex structure with transitions which 
are euclidean measure preserving. With respect to the Ahlfors-Bers complex 
structure on Qp,n, Q.p,n{v) is a complex analytic subvariety. The canonical 
map i: Hp,n{a) —> 5P,n(^") is a biholomorphism. 

The theorem provides a natural everywhere positive smooth measure /i on 
fip,n(o")- This measure determines a measure, also denoted //, on Q.pn{a), 
such that fi is invariant under the geodesic flow. 

2.4. THEOREM. With notations as above it is true that 

(2.5) /*(fi;,nW) < 00. 
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In case a — (0, (4p — 4,0,0,. . .) , — 1) or a = (0, i/, +1) the finiteness (2.5) 
has been proved by Masur [6]. The latter case is also a consequence of [14] 
and Theorem 2.3. 

Let G = SL(2,R). Because G, as a group of linear transformations of 
R2 = C, normalizes the group F, G acts naturally on the space 0(p, n). 
One sees easily that GH(p,n) = H(p,n)G, and therefore the G action de­
scends to an action on £p ? n . This action preserves each stratum Zp^n (a) and 
each level set for the norm. Let A be the diagonal subgroup, A — {^(t) — 
diag(e*/2,e - t/2)| t E R}, and let N be the group of 2 x 2 upper triangular 
matrices with l's on the diagonal. We remark that ^(t) ~ Tl (geodesic flow) 
via the relation (2.2). 

2.6. THEOREM. Let C be a topological component of 5p,n(cr). The 
A (resp. N) action is strongly mixing (resp. mixing of all orders) relative 
to the measure //. 

In the case of the "principal stratum", a = (n, (4p — 4 + n, 0,0,...), —1), 
Qp,nia) 1S already connected because its complement has real codimension 2. 
In this case the ergodicity of the A action is established in [6], and ergodicity 
of the N action is established in [7]. In fact, once one knows, say, the A 
action is ergodic, the existence of the ambient G action implies strong mixing 
for both A and AT, thanks to Moore's ergodicity theorem [8]; the higher-order 
mixing statement for AT is a consequence of a general theorem by Marcus [5]. 

We remark that in the general case Q.p,n((r) will have a finite number 
> 2 of components. It can be shown that already in genus three with a = 
(0, (0,0,0,0,0,0,0,1,0,...), +1) there are at least two components. 

3. Entropy and the Teichmüller length spectrum. A somewhat 
more delicate analysis leads to a stronger statement about the A action than 
is given by Theorem 2.6. 'Qpjn(cr) is not a manifold, but it does have an open 
subset, with negligible (codimension 2) complement, which is a manifold. 
This open set, SpiTl1 may be selected so as to be A-invariant, although it will 
not be G-invariant. We define transverse real analytic A-invariant dimension 
N(a) - 1 foliations, Wu and TP, of Sp*n. In what follows the metric D( , ) 
on Qp n is the complete metric from £p ,n , transported by the correspon­
dence (2.2). 

3 .1 . THEOREM. Let C be as in Theorem 2.6. There exists a constant 
c > 0 such that for \x-a.e. x € C we have 

l imsup t '1 logD(T ty1,T ty2) < -c 
t—+oo 

locally uniformly in 2/1,2/2 £ *Ws(x). A similar statement holds for Wu(x) and 
t —• — 00; i.e.j the geodesic flow is "measurably Anosov". 

3.2. THEOREM. Let C and /i be as in Theorem 2.6. {T*| t G R} is a 
K-system of entropy 

(3.3) hIA{T) = N{*)/2. 

In fact, it is possible to prove {T*| t € R} is Bernoulli relative to \x. 

file:///x-a.e
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Theorem 3.2 coupled with a closing lemma yields information about the 
growth of the length spectrum. In what follows 7r(C, t) denotes the number 
of periodic orbits in C of least period < t; it develops that 7r(C, t) < ebt for 
some b < oo. 

3.4. THEOREM. With notations as above we have 

(3.5) liminf J-MogTrCC*) > N{a)/2. 
t—•oo 

We do not know if the limit exists in (3.5) or if the right-hand side is the 
best lower bound. There is a bounded to one correspondence between periodic 
orbits for the geodesic (moduli) flow and conjugacy classes of pseudo-Anosov 
maps [10] in T(p, n). We obtain as a corollary of Theorem 3.4 a result, a 
special case of which is 

3.6. THEOREM. Let 7r*(p,n,t) be the number of primitive conjugacy 
classes [7] Ç T(p, n) such that there exists a pseudo-Anosov map <p G 7 with 
expansion factor at most ê. We have 

(3.7) liminfr~1log7r*(p,rM) > 6p - 6 + 2n. 
t—•oo 

Just as with (3.5), we do not know whether (3.7) is best possible or if the 
limit actually exists. 
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