ON PLATEAU'S PROBLEM FOR MINIMAL SURFACES OF HIGHER GENUS IN R³

BY FRIEDRICH TOMI AND ANTHONY TROMBA

The classical solution of the Plateau problem by Radó [10] and Douglas [3] shows that any rectifiable Jordan curve in \mathbb{R}^3 is spanned by a minimal surface of disc type. Under what conditions a minimal surface of a given higher genus exists, spanning a given Jordan curve in a Riemannian manifold N, seems to be a much more difficult problem. For compact minimal surfaces without boundary and in case N has sufficient topological complexity, the "incompressibility" method of Schoen and Yau gives a sufficient condition for existence.

In [4] Douglas did develop a method to treat the problem of when a given contour is spanned by a surface of genus p. Douglas' condition, however, seems quite difficult to verify in concrete cases. In this paper we will give simple geometric and topological sufficient conditions.

THEOREM. Let N be a solid torus of class C^3 and genus \mathfrak{g} in \mathbf{R}^3 whose boundary has nonnegative inward mean curvature, and let $\gamma \in \Pi_1(N)$ denote the homotopy class of a rectifiable Jordan curve Γ in N.

- the homotopy class of a rectifiable Jordan curve Γ in N.

 (a) If $\mathfrak{g} = 2\mathfrak{p}$ and $\gamma = a_1 a_2 a_1^{-1} a_2^{-1} \cdots a_{2\mathfrak{p}-1} a_{2\mathfrak{p}} a_{2\mathfrak{p}-1}^{-1} a_{2\mathfrak{p}}^{-1}$ where $a_1, \ldots, a_{2\mathfrak{p}}$ is a basis for $\Pi_1(N)$ then Γ bounds an immersed oriented minimal surface of genus \mathfrak{p} .
- (b) If $\mathfrak{g}=1$ and $\gamma=2\alpha$ for some $\alpha\neq 0$ in $\Pi_1(N)$ then Γ bounds an immersed minimal surface of Möbius type.

We sketch the proof of part (a).

Let Γ be a rectifiable contour in a solid $2\mathfrak{p}$ torus $N \subset \mathbf{R}^3$, M a surface of genus \mathfrak{p} with $\partial M \cong S^1$ the unit circle. Further let $\mathcal{N}_{\Gamma} = \{u \colon M \to N | u \colon M \to \Gamma \text{ monotonically, } u \in H^1(M,\mathbf{R}^3) \cap C(M,\mathbf{R}^3)\}$. Denote by M the C^{∞} Riemannian metrics g on the Schottky double \hat{M} of M such that the natural involution $T \colon \hat{M} \hookrightarrow$ is an isometry for g. Dirichlet's functional

$$E \colon \mathcal{M} \times \mathcal{N}_{\Gamma} \to R$$

is defined by

$$E(g,u) = rac{1}{2} \sum_{i=1}^3 \int_M g(x) (
abla_g u^i,
abla_g u^i) \, d\mu_g.$$

Let P be the space of all C^{∞} positive functions on \hat{M} which are symmetric and D_0 those C^{∞} diffeomorphisms which fix $\partial M \subset \hat{M}$ (as a set) and are homotopic to the identity. The Teichmüller space for M is then defined to be $\mathcal{T} = (M/P)/D_0$, a finite-dimensional C^{∞} manifold of dimension

Received by the editors May 13, 1985.

1980 Mathematics Subject Classification. Primary 53A10, 49F10.

 $-3\chi(M)$, $\chi(M)$ the Euler characteristic of M. The conformal invariance of Dirichlet's functional guarantees that E is well defined as a map

$$E \colon \mathcal{T} \times \mathcal{N}_{\Gamma} \to \mathbf{R}.$$

Let $D/D_0 = \Upsilon$ be the modular group of M. Then the Riemann space \mathcal{R} of moduli is defined as $\mathcal{R} = \mathcal{T}/\Upsilon$.

For $u \in \mathcal{N}_{\Gamma}$ consider the introduced map $u_* \colon \pi_1(M) \to \pi_1(N)$. Now $\pi_1(M) \cong \pi_1(N) \cong$ (free group on $2\mathfrak{p}$ generators). It is clear that $[\partial M]$ equals the commutator of the basis of $\pi_1(M)$ obtained from the standard polygonal model of M. By hypothesis u_* then takes the commutator to the commutator. By Zieschang's [11] generalization of a classical result of Dehn (unpublished) and Nielsen [9], u_* must be an isomorphism.

Let $([g_n], u_n) \in \mathcal{T} \times \mathcal{N}_{\Gamma}$ denote a minimizing sequence. Then since $(u_n)_*$ is an isomorphism, u_n satisfies the Douglas-Courant nondegeneracy condition. Using the Mumford compactness result for the moduli space and a clever idea of Schoen and Yau [11] one can show that the class of g_n in \mathcal{R} has a convergent subsequence. This means that there exists a sequence $f_n \in D$ such that the pull back $f_n^*(g_n)$ converges in \mathcal{M} . The Courant-Lebesgue Lemma and nondegeneracy show that u_n has a convergent subsequence. Lower semicontinuity of E then guarantees the existence of a minimum $([\bar{g}], \bar{u}) \in \mathcal{T} \times \mathcal{N}_{\Gamma}$ for Dirichlet's functional. One must now show that $([\bar{g}], \bar{u})$ represents a minimal surface. This is not straightforward since we are minimizing Dirichlet's functional subject to an obstacle restraint. Nevertheless this can be done using a regularity result for variational inequalities of the first author [12] and a suitable version of a maximal principle which shows that \bar{u} maps \hat{M} into \hat{N} . The results of Gulliver, Osserman, Royden [5, 6] now imply that the resulting minimal surface is immersed.

REFERENCES

- Richard Courant, The existence of minimal surfaces of given topological type, Acta Math.
 (1940), 51-98.
- 2. Richard Courant and Herbert Robbins, What is mathematics?, Oxford Univ. Press, New York, 1941.
- Jesse Douglas, Solution to the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), 263-321.
- 4. ____, Minimal surfaces of higher topological structure, Ann. of Math. (2) 40 (1939), 205-298.
- R. Gulliver, R. Ossermer and H. L. Royden, A theory of branched immersions, Amer. J. Math. 95 (1973), 750-811.
- 6. R. Gulliver, Branched immersions of surfaces and reduction of topological type. II, Math. Ann. 230 (1977), 23-48.
- 7. Bob Hardt and Leon Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (1979), 439-486.
- 8. Stefan Hildebrandt, Boundary behavior of minimal surfaces, Arch. Rational Mech. Anal. 35 (1969), 47-81.
- 9. J. Nielsen, Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385–397.
- Tibor Radó, On the Problem of Plateau, Ergeb. Math. Grenzgeb., Springer-Verlag, (1933).

- 11. Rick Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the topology of three manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), 127–142.
- 12. Friedrich Tomi, Variationsprobleme vom Dirichlet-Typ mit einer Ungleichung als Nebenbedingung, Math. Z. 128 (1972), 43-74.
- 13. Heiner Zieschang, Alternierende Produkte in freien Gruppen, Abh. Math. Sem. Univ. Hamburg 27 (1964), 12-31.
- 14. Luc Lemaire, Boundary value problems for harmonic and minimal maps of surfaces into manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), 91–103.
- 15. William H. Meeks, Uniqueness theorems for minimal surfaces, Illinois J. Math. 25 (1981), 318-336.

MATHEMATISCHES INSTITUT, UNIVERSITÄT HEIDELBERG, HEIDELBERG, GERMANY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA CRUZ, CALIFORNIA 95064