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L2 HARMONIC FORMS AND A CONJECTURE 
OF DODZIUK-SINGER 

BY MICHAEL T. ANDERSON1 

Let Mn be a complete simply connected Riemannian manifold of sectional 
curvature KM satisfying —a2 < KM < — 1, a > 1- Let ^{M71) denote the 
space of L2 harmonic p-forms on M, i.e. p-forms w G Ap(Mn) such that 

Au; = 0, / ÜJA*ÜJ= \OJ\2 dV < oo. 

It is clear that VJ^M71 is naturally isomorphic to )(%~v under the Hodge * 
operator, and H$(Mn) = 0. Further, it is known [2] that M^M71) naturally 
injects into the L2-cohomology of Mn. Dodziuk and Singer (see [3, 4 and 
6]) have conjectured that 11%{Mn) = 0 if p =fi n/2 and dim M£' = oo if n is 
even. An affirmative solution of this conjecture implies, by means of the L2 

index theorem for regular covers of Atiyah [1], a positive solution of the well-
known Hopf Conjecture: If M2m is a compact manifold of negative sectional 
curvature, then ( - l ) m x ( M n ) > 0. 

Dodziuk [3] has proved the L2 form conjecture for rotationally symmetric 
metrics—in particular for the space forms Hn(—a2) of curvature —a2. Don­
nelly and Xavier [5] have recently obtained results in case the curvature of 
Mn is sufficiently pinched: They show X$(Mn) = 0 if 0 < p < (n - l)/2 and 
a< (n - l)/2p. 

In this note, we outline the construction of counterexamples to the L2 form 
conjecture, in every dimension and degree except the middle. Our main result 
is 

THEOREM. For any n > 2 , 0 < p < n and a > \n - 2p|, with a > 1, there 
exist complete simply connected Riemannian manifolds Mn with 

-a2 < KM < - 1 

such that dimMCiM71) = oo. 

These manifolds have large isometry groups, I(M) = 0(2p — 1,1) x 
0(n — 2p+ 1): the principal orbits have codimension n — 2p. However, I{M) 
does not have discrete cocompact subgroups and thus Mn cannot be used to 
construct counterexamples to the Hopf conjecture. There are quotients of the 
topological form M p x i^n~2p+1, where M P is a compact manifold of 
curvature — 1. 
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OUTLINE OF CONSTRUCTION. We define the manifolds Mn to be warped 
products 

Mn = H2p{-a2)xf S n" 2 p ( l ) , 

where 5 n _ 2 p ( l ) is the space form of curvature +1 and ƒ: H2p(—a2) —> 
R, /(x) = sinhs(:c), where s is the distance to a fixed totally geodesic hyper-
plane H2p-X C H2p(-a2). The metric on Mn is given by 

dS2 = d3^2p(_02) + f2 d« |n-2p(!) . 

One easily verifies that (Mn , ds2) is a complete Riemannian manifold, diffeo-
morphic to Rn. 

(i) CURVATURE OF M: Let {X;} be a local orthonormal framing of 
H2p{—a2) by eigenvectors of D2 ƒ and {V}} a local orthonormal framing of 
Sn-2p{\). One may show that the family of 2-forms {JQAX/}, {XiAVj}, {KA 
Vy} diagonalizes the curvature operator Z: A2(TM) c-^ with corresponding 
sectional curvatures —a2, — acoths • tanh as, —1. In particular, the sectional 
curvatures of M lie in the range [—a2, —1]. 

(ii) HARMONIC FORMS ON M: Let u G \P(H2p{-a2)) be invariant under 
reflection through H2p~x and extend u; to M by defining it to be invariant 
under the isometric SO(n — 2p + 1) action on M. One computes that 

(1) Ajvfo; = A#2PU; + (—l)P[do tF — tF o d\u 

where F = (n—2p) df/f is the negative of the mean curvature of Sn~2p C Mn 

and i denotes interior multiplication. We outline a procedure reducing the case 
of general p to p = 1. First, note the identity 

H2p(-a2) = H2(-a2) xg E2p~2{-a\ 

where g: H2(—a2) —> R, g(x) = coshor(x), r is the distance function to a 
fixed point 0 G H2{—a2). Further, under this decomposition, F is tangent to 
the H2{-a2) factors. Set 

(jj = <t> A r/, <f> G k\H2{-a2)l rj G A*"1 ( f f 2 ' - 2 ( -a 2 ) ) . 

If rj is any harmonic (p — l)-form on H2p~2(—a2), then UJ satisfies (1) if and 
only if 

(2) &<t)-[doLF-LFod}<t) = 0 o n A ^ f l ^ - a 2 ) ) . 

To study the solutions of (2), set <f> = du and use the conformai equivalence of 
H2(-a2) with fi = {(x,0): x G R, 0 E (-7r/2,7r/2)} to obtain the equivalent 
equation 

(3) 

where <f>(9) = 

d2u d2u 
dx2+W + ^ ) g = o, 

= {l/fi)(dfi/d$) and / i = / | j j2 (_ o 3 ) : explicitly, 

h=h{0) = \ 
•al/a_pl/a-

cos1/» 0 

where a = 1 + sin 0, /? = 1 — sin 0. Note that <\> degenerates on dû. We may 
assume, without loss of generality, that (n — 2p) > 0, so </> > 0. 
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= VOl(S) f 
JH H2XH2P~2 

It is now quite straightforward to verify that (3) has solutions, smooth up to 
dû. If we conformally identify H2(—a2) with B2{1) with the flat metric, one 
may produce an infinite-dimensional space of solutions of (3) with \du\oo < 1. 

(iii) L2 ESTIMATE: First, we recall that \UJ\2 = ƒ UJ A *u; is a conformai 
invariant for forms in the middle dimension. For u as above, we have 

f M 2 = f \u\2fn-2pdvHdVs 
JMn JH2PxSn~2P 

\(t>\2\v\2fn-2pdVH2dVH2P-2 

<vo\Sn-2pvo\B2p-2{l)- f fn-2pdVB, 
JB2 

where we have used the conformai equivalence of Hk(—a2) with Bk(l), k = 
2,2p — 2 and assumed that rj is a harmonic (p — l)-form with |ry|oo ^ 1 with 
respect to the flat metric on B2 p~2(l) , e.g. r\ = (l/(p - 1)!) dx\ A • • • A dxp-\. 
One checks that 

f fn~2pdV < c • r cos-(n-2 p ) / a0d0, 
JB2(I) JO 

so that if (n - 2p)/o < 1, one has fMn \OJ\2 < oo. 
Further discussion and examples will appear elsewhere. 
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