L² HARMONIC FORMS AND A CONJECTURE OF DODZIUK-SINGER

BY MICHAEL T. ANDERSON1

Let M^n be a complete simply connected Riemannian manifold of sectional curvature K_M satisfying $-a^2 \leq K_M \leq -1$, $a \geq 1$. Let $\mathcal{H}_2^p(M^n)$ denote the space of L^2 harmonic *p*-forms on M, i.e. *p*-forms $\omega \in \Lambda^p(M^n)$ such that

$$\Delta \omega = 0, \qquad \int_{M^n} \omega \wedge *\omega = \int_{M^n} |\omega|^2 dV < \infty.$$

It is clear that $\mathcal{H}_2^p M^n$ is naturally isomorphic to \mathcal{H}_2^{n-p} under the Hodge * operator, and $\mathcal{H}_2^0(M^n)=0$. Further, it is known [2] that $\mathcal{H}_2^*(M^n)$ naturally injects into the L^2 -cohomology of M^n . Dodziuk and Singer (see [3, 4 and 6]) have conjectured that $\mathcal{H}_2^p(M^n)=0$ if $p\neq n/2$ and dim $\mathcal{H}_2^{n/2}=\infty$ if n is even. An affirmative solution of this conjecture implies, by means of the L^2 index theorem for regular covers of Atiyah [1], a positive solution of the well-known Hopf Conjecture: If M^{2m} is a compact manifold of negative sectional curvature, then $(-1)^m \chi(M^n)>0$.

Dodziuk [3] has proved the L^2 form conjecture for rotationally symmetric metrics—in particular for the space forms $H^n(-a^2)$ of curvature $-a^2$. Donnelly and Xavier [5] have recently obtained results in case the curvature of M^n is sufficiently pinched: They show $\mathcal{H}_2^p(M^n) = 0$ if 0 and <math>a < (n-1)/2p.

In this note, we outline the construction of counterexamples to the L^2 form conjecture, in every dimension and degree except the middle. Our main result is

THEOREM. For any $n \geq 2$, 0 and <math>a > |n-2p|, with $a \geq 1$, there exist complete simply connected Riemannian manifolds M^n with

$$-a^2 \le K_M \le -1$$

such that dim $\mathcal{X}_2^p(M^n) = \infty$.

These manifolds have large isometry groups, $I(M) = O(2p-1,1) \times O(n-2p+1)$: the principal orbits have codimension n-2p. However, I(M) does not have discrete cocompact subgroups and thus M^n cannot be used to construct counterexamples to the Hopf conjecture. There are quotients of the topological form $\overline{M}^{2p-1} \times R^{n-2p+1}$, where \overline{M}^{2p-1} is a compact manifold of curvature -1.

Received by the editors January 29, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58C35, 58G05, 53C20.

¹NSF Mathematical Sciences Postdoctoral Fellow.

OUTLINE OF CONSTRUCTION. We define the manifolds \mathcal{M}^n to be warped products

$$M^n = H^{2p}(-a^2) \times_f S^{n-2p}(1),$$

where $S^{n-2p}(1)$ is the space form of curvature +1 and $f: H^{2p}(-a^2) \to R$, $f(x) = \sinh s(x)$, where s is the distance to a fixed totally geodesic hyperplane $H^{2p-1} \subset H^{2p}(-a^2)$. The metric on M^n is given by

$$ds^{2} = ds_{H^{2p}(-a^{2})}^{2} + f^{2} ds_{S^{n-2p}(1)}^{2}.$$

One easily verifies that (M^n, ds^2) is a complete Riemannian manifold, diffeomorphic to \mathbb{R}^n .

- (i) CURVATURE OF M: Let $\{X_i\}$ be a local orthonormal framing of $H^{2p}(-a^2)$ by eigenvectors of D^2f and $\{V_j\}$ a local orthonormal framing of $S^{n-2p}(1)$. One may show that the family of 2-forms $\{X_i \wedge X_j\}$, $\{X_i \wedge V_j\}$, $\{V_i \wedge V_j\}$ diagonalizes the curvature operator $\mathcal{R}: \Lambda^2(TM) \hookrightarrow$ with corresponding sectional curvatures $-a^2$, $-a \coth s \cdot \tanh as$, -1. In particular, the sectional curvatures of M lie in the range $[-a^2, -1]$.
- (ii) HARMONIC FORMS ON M: Let $\omega \in \Lambda^p(H^{2p}(-a^2))$ be invariant under reflection through H^{2p-1} and extend ω to M by defining it to be invariant under the isometric SO(n-2p+1) action on M. One computes that

(1)
$$\Delta_{M}\omega = \Delta_{H^{2p}}\omega + (-1)^{p}[d \circ \iota_{F} - \iota_{F} \circ d]\omega$$

where F = (n-2p) df/f is the negative of the mean curvature of $S^{n-2p} \subset M^n$ and ι denotes interior multiplication. We outline a procedure reducing the case of general p to p = 1. First, note the identity

$$H^{2p}(-a^2) = H^2(-a^2) \times_q H^{2p-2}(-a^2),$$

where $g: H^2(-a^2) \to R$, $g(x) = \cosh ar(x)$, r is the distance function to a fixed point $0 \in H^2(-a^2)$. Further, under this decomposition, F is tangent to the $H^2(-a^2)$ factors. Set

$$\omega = \phi \wedge \eta, \qquad \phi \in \Lambda^1(H^2(-a^2)), \qquad \eta \in \Lambda^{p-1}(H^{2p-2}(-a^2)).$$

If η is any harmonic (p-1)-form on $H^{2p-2}(-a^2),$ then ω satisfies (1) if and only if

(2)
$$\Delta \phi - [d \circ \iota_F - \iota_F \circ d] \phi = 0 \quad \text{on } \Lambda^1(H^2(-a^2)).$$

To study the solutions of (2), set $\phi = du$ and use the conformal equivalence of $H^2(-a^2)$ with $\Omega = \{(x,\theta) \colon x \in R, \ \theta \in (-\pi/2,\pi/2)\}$ to obtain the equivalent equation

(3)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial \theta^2} + \phi(\theta) \frac{\partial u}{\partial \theta} = 0,$$

where $\phi(\theta) = (1/f_1)(\partial f_1/\partial \theta)$ and $f_1 = f|_{H^2(-a^2)}$: explicitly,

$$f_1=f_1(heta)=rac{1}{2}\left[rac{lpha^{1/a}-eta^{1/a}}{\cos^{1/a} heta}
ight]$$

where $\alpha = 1 + \sin \theta$, $\beta = 1 - \sin \theta$. Note that ϕ degenerates on $\partial \Omega$. We may assume, without loss of generality, that (n - 2p) > 0, so $\phi > 0$.

It is now quite straightforward to verify that (3) has solutions, smooth up to $\partial\Omega$. If we conformally identify $H^2(-a^2)$ with $B^2(1)$ with the flat metric, one may produce an infinite-dimensional space of solutions of (3) with $|du|_{\infty} < 1$. (iii) L^2 ESTIMATE: First, we recall that $|\omega|^2 = \int \omega \wedge *\omega$ is a conformal

invariant for forms in the middle dimension. For ω as above, we have

$$\int_{M^n} |\omega|^2 = \int_{H^{2p} \times S^{n-2p}} |\omega|^2 f^{n-2p} \, dV_H \, dV_S$$

$$= \operatorname{vol}(S) \int_{H^2 \times H^{2p-2}} |\phi|^2 \, |\eta|^2 f^{n-2p} \, dV_{H^2} \, dV_{H^{2p-2}}$$

$$\leq \operatorname{vol} S^{n-2p} \cdot \operatorname{vol} B^{2p-2}(1) \cdot \int_{B^2} f^{n-2p} \, dV_B,$$

where we have used the conformal equivalence of $H^k(-a^2)$ with $B^k(1)$, k=2, 2p-2 and assumed that η is a harmonic (p-1)-form with $|\eta|_{\infty} \leq 1$ with respect to the flat metric on $B^{2p-2}(1)$, e.g. $\eta = (1/(p-1)!) dx_1 \wedge \cdots \wedge dx_{p-1}$. One checks that

$$\int_{B^2(1)} f^{n-2p} \, dV < c \cdot \int_0^{\pi/2} \cos^{-(n-2p)/a} \theta \, d\theta,$$

so that if (n-2p)/a < 1, one has $\int_{M^n} |\omega|^2 < \infty$.

Further discussion and examples will appear elsewhere.

References

- 1. M. F. Atiyah, Elliptic operators, discrete groups and Von Neumann algebras, Asterisque **32–33** (1976), 43–72.
- 2. J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math. vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 91-146.
- 3. J. Dodziuk, L^2 harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Amer. Math. Soc. 77 (1979), 395-400.
- 4. $_{---}$, L^2 harmonic forms on complete manifolds, Seminar on Differential Geometry, ed. S. T. Yau, Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982.
- 5. H. Donnelly and F. Xavier, On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math. 106 (1984), 169-185.
- 6. S. T. Yau, Problem section, Seminar on Differential geometry, Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982.

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, 35, ROUTE DE CHARTRES, 91440 BURES-SUR-YVETTE, FRANCE

Current address: Department of Mathematics, California Institute of Technology, Pasadena, California 91125