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STRICTLY ERGODIC MODELS FOR DYNAMICAL SYSTEMS 

BY BENJAMIN WEISS 

The action of a group G by homeomorphisms of a compact metric space X 
is said to be strictly ergodic if there is a unique Borel probability measure JJL 
fixed by the action, and /i(f/) > 0 for every nonempty open set U C X. For 
commutative groups G (as well as for general amenable groups) this implies 
that the action is minimal, since if Xo ^ X is closed and G-invariant there 
would exist a G-invariant measure supported by Xo which would necessarily 
be different from fi. Analogously one sees that the dynamical system (X, G, fi) 
must be ergodic. A remarkable result due to R. Jewett [Je] and W. Kreiger 
[K] says that for G = Z, any ergodic action is isomorphic to a strictly ergodic 
system. This was extended to G = R by K. Jacobs [Ja] and M. Denker and 
E. Eberlein [DE]. Thus the topological property of strict ergodicity places no 
restriction on the measure theoretic properties beyond the obvious ergodic­
ity. It is natural to ask what happens for more general groups G, and what 
happens, even in the case of Z, when we look at diagrams in the category 
of ergodic Z-actions rather than simply the objects themselves. In brief our 
results are: 

(1) When G is commutative every ergodic action has a strictly ergodic 
model. 

(2) Any diagram in the category of ergodic Z-actions with the structure of 
an inverted tree, i.e., no portion of it looks like 

X 

/ \ 
Y Z 

has a strictly ergodic model (as a diagram). However, not every measure 
theoretic triple 

X 

/ \ 
Y Z 

can have a strictly ergodic model. 
As a consequence of (2), we can, for example, take any ergodic Z-action that 

has some point spectrum and provide for it a strictly ergodic model in which 
all the eigenfunctions are continuous. One can combine (1) and (2) which was 
formulated for Z-actions for those interested in the classical situation. 

The method of proof that was developed for (1) is flexible enough to ad­
mit further refinements. For example, suppose that G = Z2, and the action 
is given by a pair of commuting transformations T, S which are known to 
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be separately ergodic. Then we can find a strictly ergodic model (X\T,G) 

where separately (X, T),(X,<T) are strictly ergodic as Z-actions. Looking to 
more general G's, the proof can be adapted to handle the so-called elementary 
amenable groups (cf. C. Chou [C]), but it becomes necessary to assume, in 
addition to the ergodicity, the freeness of the action.1 This is not a conse­
quence of strict ergodicity but rather comes from the fact that the proof relies 
heavily on the existence of Rohlin towers for which one needs the freeness of 
the action. 

I would like to thank the MSRI for their hospitality during the 1983-1984 
Dynamics year when this work was done. 

1. Z2-actions. In what follows I will give a sketch of the proof of the 
following theorem, which is the easiest case of (1) above, and already contains 
the main elements of the more general results. 

THEOREM 1. If (y, C,v\T\,T<2) is an ergodic 7?-action with generators 
Ti,T2 then there exists a strictly ergodic Z2-system (X,TI ,T2) with unique in­
variant measure /i, such that (X,TI,T2,/X) is measure theoretically isomorphic 
to(YiC,i/;Ti,r2). 

Let's call a set C G C uniform if 

lim 
n—>oo 

JL £ ic{nnx)-v(c) 
(ij)es, 

= 0 

where Sn is the square {{i,j) : max(|i|, \j\) < n}. Our goal is to construct an 
algebra of uniform sets that is (Ti,T2)-invariant and generates C. Standard 
techniques will then give an explicit strictly ergodic model. An intermediate 
goal is to construct some such nontrivial algebra without worrying about 
generating C, and this is what we will do now. The main device will be a 
nested sequence of "uniform" Rohlin towers. 

DEFINITIONS. (1) A setB GC is the base of an (n, M, 8)-uniform R-tower 
if 

(i) BDTiTiB = 0 all (z,j) G Sn\{(0,0)}, 
(ii) for a.e. ye Y, 

\{(i,j)<ESM:TiTiy€B}\-\Sn\ 

' m > 

(2) A sequence of uniform R-towers {Bi\(n^M^8i)) will be said to be 
nested if f or all y G Bi, y' G £;>, i < i' if 

SniynSni,y'ï 0 

then Sniy C Sn.,y
f. (Here we begin writing Sny in lieu of {T\T%y',(i,j) G 

Sn}.) 
1NOTE ADDED IN PROOF. Alan Rosenthal and I have succeeded in extending the 

results described here to amenable groups in general, with the added assumption that the 
action be free. 
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(3) Finally, we will call a sequence well-nested if the uniformities per­
sist even after some sequence of modifications in which the internal tilings 
of Sniy, y G Bi by Sn/s with j < i are interchanged. 

After constructing a sequence of well-nested uniform P-towers 

Bi,(ni,Mi,6i) 

we proceed as follows. Given a partition P, and some e > 0 w e will show how 
to construct a P, such that the algebra 

oo 

(J V T[TÎP 
n=1 (iJ)esn 

is uniform, and d(P, P) < e. Applying a refinement of the ergodic theorem, we 
find some i\ large enough so that most of the Sni — P-names across B^ have 
a 1-block distribution very close to the global distribution of P . Change P 
to Pi so that all Sni — Pi-names across Bix have good 1-block distributions. 
The fact that Bix is (n^jM^j^J-uniform gives us our first uniformity for 
Pi. Next we apply a refinement of the ergodic theorem again to find an ^2, so 
that Sni2 —Pi-names across Bi2 have a good "2-block" distribution. Changing 
Sni — Pi-names which aren't good involves a change in B\. This is where the 
fact that the sequence is well nested comes in. This procedure is iterated to 
give the required P, and our intermediate goal has been achieved. The best 
way to finish the proof of the theorem is to use the techniques of §2 below to 
catch more and more of C. 

2. The relative J-K theorem. The basic result here is the following 

THEOREM 2. If (X,r) is a strictly ergodic Z-action, and (F, C,v,T) is 
an ergodic measure theoretic extension of (X,T), then there exists a strictly 
ergodic extension of (X, f) of (X, r) isomorphic to the pair Y —> X. 

For the proof one first finds, by well-known techniques, an extension of 
(X, r) that is zero-dimensional but measure theoretically isomorphic. Then 
one reduces the theorem to the following 

THEOREM 3. If P is a finite partition of Y so that the algebra A = 
U^Li V - n ^ ^ zs uniform and Q î 5 any finite refinement of P and € > 0 is 
given, then there exists a Q, a finite refinement of P such that 

( i ) I X L i _ V - „ ^ Q is uniform, 
(ii)d(Q,Q)<e. 

The key observation here is to let the fact that the algebra generated by 
P is uniform help us out. We will describe the first step in the process of 
constructing Q. In the usual way, the ergodic theorem says that for n large 
enough most Q — n-names have a good 1-block distribution. Form an J?-tower 
of height n, with base B G A, that fills most of Y. Most of the P-pure columns 
have some good Q-refinements. For these, modify Q to Qi so that all the 
Q-refinements have good ç-block distribution. Denote by B\ the base of the 
tower consisting of these P-pure columns. Note that B\ G A, and fills most 
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of F , so since A is uniform, for some N, and a.e. y, the P — iV-name of y is 
almost all in the tower above B\, and so for a.e. y the Q\ — iV-name has good 
1-block distribution. 

In the next step, we will look at PV{B\, F\2?i}-pure columns and continue 
the process. At each stage the uniformity will come from the fact that the 
good distributions will be on a very large set in the uniform algebra A. It is 
more or less routine to push this idea through and prove Theorem 3. 

The fact that not all diagrams of the type 

X 

/ \ 
Y Z 

are realizable as strictly ergodic systems is a consequence of the following 
elementary result. 

THEOREM 4. If (X, r) is strictly ergodic with unique invariant measure 
X and 7r: (X,T) —• (Y,r), p: (X,T) —• (Z,r) are factor maps with 7r_1(w) D 
p~l(v) ^ 0 for any nonempty open sets U C Y, V C Z then (Y,r,7roA) and 
(Z, r, p o A) are measure theoretically disjoint. 

It follows that if we take any weakly mixing process, say (Y,T), and con­
sider 

YxY 
/ \ 

Y Y 

then this diagram cannot have a uniquely ergodic model, since naturally (Y, T) 
is not measure theoretically disjoint from itself. It is not yet clear what the 
precise conditions on a diagram such as 

X 

/ \ 
Y Z 

are that guarantee the existence of a strictly ergodic model. 
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