
BOOK REVIEWS 65 

volumes range from Feynman's three, to Arnold Sommerfeld's seven, to 
Landau's and Lifschitz's at least ten. Let us hope that this volume, with its 
incisive vision of the unity of mathematics, will initiate a similar fashion in the 
mathematical community. I believe such book writing is long overdue. 
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The classical theory of extreme values of probability theory deals with the 
asymptotic distribution theory of the maxima and the minima of independent 
and identically distributed (i.i.d.) random variables. That is, let Xl9 X2,... ,Xn 

be i.i.d. random variables with common distribution function F(x). Put 
Wn = m i n ^ , X29...,Xn) and Zn = m a x ^ , X2,...9Xn). Then the distribu­
tion functions of Wn and Zn satisfy 

Ln{x) = P(W„<x) = l-[l-F(x)]" 

and 
H„(x) = P(Z„^x) = F"(x). 

It is rare in probability theory that F(x) is known. Indeed, the field of 
determining F(x) from some elementary properties, known as characteriza­
tions of probability distributions, is quite recent (for the history of the field of 
characterizations, see the introduction in Galambos and Kotz (1978)). On the 
other hand, if F(x) is determined by some approximation, however accurate, 
the values of Hn(x) and Ln(x) cannot be computed from the above formulas 
due to the sensitivity of un to u for large n (compare 0.995400 = 0.1347 and 
Q 999400 = 0.6702). This difficulty is overcome in an asymptotic theory that is 
invariant for large families of population distribution F(x). In other words, for 
varying F(x), linearly normalized extremes (Zn - an)/bn or (Wn - cn)/dn 

have the same limiting distribution functions H(x) or L(x), respectively. The 
theory is well developed for finding these appropriate normalizations and the 
forms of the limiting distribution functions, as well as for easy-to-apply criteria 
for F(x) leading to a particular H(x) or L(x). Chapter 2 of Galambos (1978) 
gives a full account of this theory. 

The classical theory of extremes can at best be applied as a first approxima­
tion to real-life models. Observations collected in, or produced by, nature are 
rarely independent, and neither are components of pieces of equipment func­
tioning independently. For example, floods, defined as the highest (random) 
water level of a river at a given location, are clearly obtained through strongly 
dependent values, which dependence might weaken as time goes on. In 
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engineering applications, on the other hand, when a piece fails as soon as one 
of its (major) components fails, and thus the life of the equipment is the 
minimum of the lives of its components, the dependence determined by the 
structure of the components might be so strong that the classical model could 
not even be used as a guide in determining the asymptotic distribution of the 
"life" of the equipment when the number n of components is large. A further 
need for the investigation of models other than the classical ones is the 
Bayesian thinking in statistics: If parameters are random, then independent 
observations at a given parameter value are, in fact, exchangeable random 
variables. These needs, as well as mathematical curiosities, led to the investiga­
tion of the asymptotic theory of extremes for a large variety of models. The 
following four models went through the most extensive development in the 
past two decades. 

Stationary mixing sequences. Let Xl9 X29... be identically distributed ran­
dom variables, and let T be a finite set of positive integers. The Xj9j > 1, are 
said to be stationary if, for every integer s > 1, the joint distribution of 
{ Xp j e T } is the same as that of { XJ+S, j s T }. Furthermore, this sequence 
is mixing if the previous two blocks of random variables are asymptotically 
independent as s-* +oo. Loynes (1965) gave a detailed analysis of the 
asymptotic distribution of the extremes for this model. Supplemented by the 
results of O'Brien (1974), the conclusion of Loynes is that the asymptotic 
behavior of the extremes in a stationary mixing sequence, under some addi­
tional assumption, is similar to the classical case. 

^-sequences. Let G = (V, E) be a graph with vertex-set V = {1,2,.. . ,«} 
and E c V2 (the edges of the graph). The vague description of an £w*-sequence 
is as follows (for an exact definition see pp. 176-177 of Galambos (1978)). The 
random variables Xl9 X29...9Xn form an ^-sequence if the events {Xj> zn) 
satisfy the following dependence requirements. Here, zn is a sequence of 
numbers such that Fj(zn) < 1 for ally and supjFj(zn) -» 1 as n -> 4- oo. First, 
if (I'X, i2>. ••>'*) is such that no pair (iJ9im) belong to £, then the events 
{ Xx > zn) are asymptotically independent. Second, if exactly one pair (ij9 im) 
e E9 then the probability of the joint occurrence of { Xit > zn }, 1 < t < k9 can 
be majorized by the product of P(Xr > zn9 Xim > zn) and P(Xt > zn)9 t #y, 
m. Finally, the number of elements of E is o(n2). In this model, under some 
conditions, the asymptotic distribution of extremes, when normaHzed, is the 
same as if they were independent. Consequently, all distributions with mono-
tonic hazard rate are possible limiting distributions. This is pleasing in en­
gineering applications where distributions with monotonie hazard rate are 
widely applied as life distributions without reference to extreme value theory. 
This model gives the necessary theoretical justifications to such applications. 

It should be noted that the present model contains as a special case the 
stationary mixing sequences. Simply take an integer s = s(n) = o(n). Let E be 
defined as the set (/, j) with \i — j \ < s. Then the conditions in this model are 
somewhat less restrictive than those of Loynes, even when stationarity is added 
to the assumptions. 

Gaussian sequences. If the joint distribution of Xl9 X2,...9Xnis multivariate 
normal, we speak of Gaussian sequences. If the sequence XJ9 j > 1, is sta­
tionary Gaussian, and if the correlation coefficient rm of Xj and XJ+m satisfies 
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rmlogm -> 0 as m -> -foo, then the result of Berman (1964) says that the 
asymptotic distribution of the extremes is the same as if they came from an 
i.i.d. sequence of normal variables. When the assumption on the correlation 
coefficient fails, then new asymptotic laws are obtained for the normalized 
extremes: Among the possibilities are the normal distribution and its mixtures 
with the classical extreme-value distributions (Mittal and Ylvisaker (1975)). 

Exchangeability. It was mentioned earlier that exchangeable variables are as 
basic in Bayesian statistics as independence is for non-Bayesian statistics. 
Purely probabilistic arguments can also lead to exchangeable variables. The 
asymptotic theory of extremes for these models was developed by Berman 
(1962) and Galambos (1973) and (1975). The theory is significantly different, 
depending on whether the basic random variables constitute a finite segment of 
an infinite sequence of exchangeable variables, or whether they come from a 
finite sequence which cannot be further extended without violating exchangea­
bility. In both cases, however, the limiting distributions of the extremes are 
mixtures of the classical limiting distributions with an arbitrary distribution. 
When this latter mixing distribution is degenerated at a point, the classical 
limiting distributions are reobtained. Criteria for this to happen are also 
available. 

These four models, together with the classical one, are fully covered in the 
book by Galambos (1978). The book under review concentrates on the model 
of stationary mixing sequences, with a short review of the classical model and 
the Gaussian case. No mention is made that other models have also been 
investigated, although the list of references from Galambos (1978) is repro­
duced (without acknowledgement), so the interested reader can find out what 
else had been done prior to 1978. 

The book under review also discusses extreme values in continuous time. It 
presents a detailed development for the case of stationary normal processes for 
which several explicit extremal results are known. The extremal theory is 
approached through the consideration of properties of upcrossings of a high 
level. When normality is not assumed, the extremal theory of stationary 
continuous time processes is reduced to discrete parameter results. Although 
the discrete parameter case is very restrictive, and thus it does not represent 
current knowledge in the field, the corresponding dependence assumptions in 
the continuous time case lead to one of the most general results known today. 
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This book is intended to provide a unified theory of integration (Riemann, 
Lebesgue, etc). Professor McShane believes that the way integration is taught 
now is not very efficient, since we first teach our students the Riemann 
integral, and then, once we have introduced them to the Lebesgue integral, 
abandon all our earher work about the Riemann integral. 

In this book Professor McShane tries to produce a unified way of defining 
the integral; of course, he includes, as a special case, the Riemann integral. The 
author hopes that this way of introducing the integral "can also go from 
beginning calculus to the graduate level without ever abandoning earher work 
and starting again (as usually now happens when Lebesgue integration is 
met)". 

The book under review begins with the introduction of the gauge integral. 
Some preliminaries are necessary for its definition. 

An allotted partition of a set B in R is a finite set of pairs 

P = {{xl9Al),...,(xk9Ak)} 
in which the Ai are pairwise disjoint left open intervals in R9 the xt are points 
in [— oo, 4- oo], and B = Uf^^,. 

To an allotted partition P and an extended real-valued function/, S(P, ƒ) 
will denote the sum Lf-i/(x /)m(^4 /), where m(A() is the length of the interval 
A,. 

A gauge T on a set B in [ - oo, + oo] is a function x -> T(x) such that, for 
each x in B, T(x) is a neighborhood of x. 

If T is a gauge on [ - oo, + oo] and P is an allotted partition of a set B that is 
equal to the union of the ^ / s , P is said to be T fine if, for each / = 1,2,...,k9 

the closure of At is included in T(JC/). 
Now, the definition of the gauge integral is given as follows: 
DEFINITION. Let B be a subset of R and ƒ a real-valued function defined on a 

subset D of [ — oo, + oo]. Suppose B is contained in D. Define g to be equal to ƒ 
on B and to be zero on [ - oo, + oo]\i?. The function ƒ is said to be gauge 
integrable on B and of gauge integral / if for every e > 0 there exists a gauge T 
on [-oo, + oo] such that if P is a T fine partition of R, S(P9 g) exists and 
\S(P, g)~J\< £. 


