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1. Introduction. We say that a Lie algebra £ of vector fields on a smooth 
manifold M is transitive provided that for each point p e M, the vectors 
{X(p): X e £ } form the tangent space at/?. The algebra Ö is doubly transitive 
if its natural lifting £ e £ = {X 0 X: X e £ } of £ to M X M is transitive on 
the complement of the diagonal A. Higher orders of transitivity are defined 
analogously. (Just as the full group of diffeomorphisms of a manifold M is 
«-fold transitive for all w, so is its Lie algebra of vector fields; but the fact 
about the algebra is far easier to establish.) We are able to exploit the high 
degree of transitivity of many natural Lie algebras of vector fields to establish 
irreducibility and inequivalence of certain of their "geometric" or "induced" 
representations, regarded as unitary representations of the corresponding 
infinite-dimensional Lie transformation groups. Our technique is a direct 
descendant of a classical theorem of Burnside on permutation groups. 

The applications include much simpler proofs of some of the results of the 
Soviet school on unitary representations of the group of diffeomorphisms [10]. 
We also get significant generalizations of the pioneering results of Léon van 
Hove [9] on what is now known as "prequantization", i.e., representations of 
the Poisson bracket Lie algebra of a symplectic manifold. The algebraic 
technique seems quite fruitful—this is not exactly a surprise—and other 
applications are forthcoming. 

Some of our results were mentioned briefly in [3]. Full details will appear 
elsewhere. 

2. The main theorems. If G is a group acting on a discrete set M, then the 
corresponding representation of G on l2(M) is irreducible on the orthogonal 
complement of the constants if and only if the group action on M is doubly 
transitive. This is essentially due to Burnside (cf. [2, p. 249]), and may also be 
extracted from the work of Mackey [4]. The proof is quite simple: If T is an 
intertwining operator with kernel k(x, y), then we must have the invariance 
property k(x, y) = k(x • g, y • g) for x, y e M and g e G. By double transi­
tivity, M X M decomposes into two (/-orbits (the diagonal A and its comple­
ment) on which the kernel k is constant. Hence k is a linear combination of the 
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identity / and the orthogonal projection P onto the constants. Of course P = 0 
if M is infinite. 

Our main results are analogues of Burnside's theorem. The proofs are in the 
same spirit, formally. Of course, the analytic details are more involved. In 
particular, we make use of the Schwartz kernel theorem to study the intertwin­
ing operators. 

THEOREM 1. Let M be a connected finite-dimensional manifold with a smooth 
measure /A. Let 8 be a doubly transitive Lie algebra of divergence-free vector fields 
on M. Suppose that each I G Ö defines an essentially skew-adjoint operator, with 
domain C™(M\ in L2(M, /A). (This roughly means that the vector field X has a 
complete flow.) 

Then the corresponding family of unitary operators {exp(Jf): I G S ) acts 
irreducibly on the orthogonal complement of the constants', this is all of L2 if 
\i(M)is infinite. 

Now let fi be an abstract Lie algebra and let A: Ü -> Vect(M) be a Lie 
homomorphism of S into the Lie algebra of vector fields on M. Let p: 
S -> C°°(M) be a linear mapping, and suppose that p satisfies the "cocycle" 
identity 
(1) p([X,Y])=A(X).p(Y)-A(Y)-p(X). 
Then B( X) = A( X) + p(X) is also a homomorphism from S into the differen­
tial operators on M. We say that the multiplier is trivial if p corresponds to a 
1-form on M (in which case the identity (1) essentially says that dp = 0, so that 
the representation B is locally equivalent to A). 

THEOREM 2. Let X -» A(X) be a doubly-transitive skew-adjoint representation 
of £ on M. Assume that p is a nontrivial multiplier for A. Set B — A + p, as 
above. Then (in the sense of Theorem 1) the representation B of S on L2(M, ti) is 
irreducible. 

3. Applications. A. Let M be a connected manifold, /i a smooth measure, and 
suppose for simplicity that /x(M ) - oo. Let S c Vect(M) be the Lie algebra of 
compactly supported divergenceless vector fields; formally S is the Lie algebra 
of the group G = Diff0(M, /i) of volume-preserving diffeomorphisms g such 
that g — identity outside some compact set (depending on g). It is easy to see 
that, if the dimension of M is greater than one, then S is n-fold transitive for 
all n. Hence the natural, "Koopman", representation U of G on L2 is 
irreducible by Theorem 1. The techniques used in the proof of Theorem 1 may 
also be applied to study the higher tensor powers of U. Thus, for example, 
under U ® U, the space L2(M X M) decomposes into two irreducible in­
variant subspaces, viz L2 symmetric and L2 antisymmetric. The corresponding 
unitary representations of G are inequivalent to each other and to U. One can 
also show that the natural action of G on the tangent bundle TM induces an 
irreducible representation on L2(TM). 

B. Let (M, o)) be a symplectic manifold, and let g be the algebra of C °̂ 
functions on M with Poisson bracket. Following van Hove [9] (see also 
[5,6,7,8]) we define, for ƒ G g, 

A( f ) = X* = the Hamiltonian vector field of ƒ 
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so that Xf- g = { ƒ, g}. We then find that multipliers p correspond to deriva­
tions of 8f. Moreover g has essentially one outer derivation 0 with 0(1) = 1. 
E.g. for M = R2n with coordinates q, p, van Hove sets 0(f) = ƒ -
YJl^xPi 'àf/'àPi' Finally, for each nonzero real X, set Bx( ƒ ) = A} + f-ï • À0( ƒ ). 
Then, by Theorem 2, the representation Bx acts irreducibly on L2(M, cow). The 
representations Z?x are mutually inequivalent since they are different on the 
center ({scalars}) of g. One gets new inequivalent representations by reducing 
tensor powers of the Bx

9s. 
C. Now let (M, co) be a compact symplectic manifold. Then, as Avez has 

shown, we get a derivation by setting 

*(/) = ~TU\ f / * + ƒ> the mean o f / 

where fi = w". Theorem 1 estabUshes immediately Avez's theorem [1] that the 
corresponding representations Bx are irreducible. Higher tensor powers yield 
new, inequivalent representations. Thus the question of their existence, raised 
in [1], has an easy positive answer. 
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