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What is an amart? Let (Xn) be a sequence of random variables adapted to 
increasing sigma algebras S?n. A stopping time is a random variable T taking 
positive integer values and the value 4- oo such that if n < oo, then the event 
{ T = n } (equivalently, {T < n }) is in .£?„. Intuitively, this means that the event 
T equals n is determined by the outcome of the trials up to the time n. If Xn is 
the fortune of a gambler at time n and the casino gives no credit, then the time 
when a ruined gambler must stop is also a stopping time in the mathematical 
sense. Stopping times, as propounded by J. L. Doob and, later, by the 
Strasbourg school led by P. A. Meyer, are among the most important features 
of modern probability. For convergence problems, of special importance are 
simple stopping times: those taking finitely many finite values. (Simple stop­
ping times are also the only ones of practical importance: They do not require 
an infinite amount of time or an infinite fortune.) Let 2 be the collection of 
simple stopping times. A martingale can be defined by the property: the net 
(EXT: T in 2 ) is constant. If the same net converges, the process (Xn) is called 
an amart (originally an acronym for asymptotic martingale). Since amarts are 
to include martingales, it is crucial in this definition to allow only simple 
stopping times: Otherwise a martingale need not be an amart, as seen by the 
example of the famous original gambling martingale in which the player 
doubles his stake each time he loses. After the first article by John Baxter [5], 
the amart convergence theorem—asserting almost sure convergence of Lx-
bounded amarts—was proved by D. G. Austin, G. A. Edgar, and A. Ionescu 
Tulcea ( = A. Bellow) [3]. The same result was obtained in a less explicit but 
stronger form by R. V. Chacon [12]. Chacon's "Fatou's inequalities" were 
anticipated by W. D. Sudderth [40], who was influenced by L. Dubins, but 
Sudderth considered nonsimple stopping times. The amart convergence theo­
rem, and more, was proved earlier in a measure-theoretical form involving no 
stopping times by C. Lamb [29]. We submit, however, that the amart theory 
started with simple stopping times, and that, in fact, the notion of simple 
stopping time is more basic here than the exact definition of the amart, since 
the deeper convergence theorems on directed sets have various forms, all of 
which share the use of simple stopping times. More about this later. The article 
of Chacon and the reviewer [13] initiates vector-valued amarts. These authors 
are the first to believe that the notion merits a name: asymptotic martingale. A 
systematic presentation of the amart theory paralleling the martingale theory, 
including for the first time the optional sampling theorem, the Riesz decom­
position, the descending and the continuous parameter cases, was given by 
Edgar and the reviewer [21]. This article calls a spade a spade, introducing the 
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term "amart". It was already obvious at that time that there would be many 
varieties of amarts, so that a short term was needed to leave room for 
adjectives. 

What is interesting about amarts? First, a martingale is not an asymptotic 
notion, by which I mean that if the first few terms are changed, the martingale 
property is destroyed. Thus, clearly, the martingale property cannot be neces­
sary and sufficient for convergence, but the amart property is, in the class of 
sequences with integrable supremum. Second, the class of L rbounded amarts 
is closed under lattice operations (equivalently, truncation); martingales, of 
course, are not. To be sure, there is an important asymptotic notion that is 
closed under lattice operations and generalizes the martingale: quasi-
martingale. Quasimartingales are essential in stochastic integration. Amarts 
include quasimartingales; to understand the difference, note that in the de­
terministic case (one-point space), amarts are exactly the sequences that 
converge; quasimartingales are exactly the sequences of bounded variation. If 
one is only interested in convergence, then the assumption of bounded varia­
tion is an overkill. The difference proved important in the theory of martingales 
indexed by the plane: Amart methods could solve open martingle problems for 
which the theory of the stochastic integral was not suitable (see A. Millet and 
the reviewer [37]). 

Next is the matter of simplicity of proofs. A stopping time is a more 
elementary notion than conditional expectation in that its definition does not 
require the Radon-Nikodym theorem, and proofs involving stopping times are 
very intuitive. To make the point I will sketch the proof of a.s. convergence of 
amarts with the integrable supremum. The basic observation is that there is an 
increasing sequence of simple stopping times T(n) such that XT(n) converges in 
probability to X* = limsupX„. The reason for this is that limsup—or any 
other accumulation point—manifests itself infinitely often on the way to 
infinity; it is like a light shining on the horizon. (This, of course, is not true for 
the supremum, which can all too easily be missed.) Thus, after we obtain XT(l) 

close in probability to X*, we can find T{2) > T(l) such that XT{2) is even 
closer to X*, etc. Similarly, we obtain an increasing sequence of simple 
stopping times Sn such that XS(n) converges in probability to X* = liminf Xn. 
Integrating XT(n) and XS{n) and using the amart property, we can conclude that 
X* = X*. The a.s. convergence of Lrbounded amarts follows by truncation or 
stopping: The class of L1-bounded amarts is closed under both operations 
[3,21]. (An even shorter proof of this convergence was given by A. Dvoretzky 
[18].) Convergence of uniformly integrable amarts is already sufficient to 
derive the Radon-Nikodym theorem. If the martingale property is defined, as 
usual, using the conditional expectation, an obvious circulus viciosus occurs 
when the martingale theorem is used to obtain the Radon-Nikodym theorem. 
As a solution, but not the most economical one, it is possible to define the 
conditional expectation without the Radon-Nikodym property, as in Meyer 
[30, p. 153]. The amart approach seems better. 

But what about really new results and applications? High hopes have 
attended the beginnings of the amart theory, but after ten years we know some 
of its limitations. Real-valued amarts indexed by positive integers are too close 
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to martingales to have striking, new applications. This follows from the 
characterization in [25]: A sequence (A „̂) is an amart if and only if Xn = Yn + 
Zn, where (Yn) is a martingale and (Z„) is an amart dominated by a positive 
supermartingale converging to zero. Fortunately, in the Banach-valued case 
this limiting characterization applies only to "uniform amarts", but not to 
other classes of amarts. On directed sets, where some of the deepest appli­
cations of amarts were obtained, the decomposition Yn + Zn holds, but gives 
less information, because supermartingales in general do not behave as well as 
amarts. 

First we survey Banach-valued amarts. The modern approach to probability 
in abstract spaces consists in exactly matching the convergence property to the 
geometry of the space. Example. L rbounded E-valued martingales converge 
a.s. if and only if the Banach space E has the Radon-Nikodym property (the 
Radon-Nikodym theorem holds for £-valued measures; see A. and C. Ionescu 
Tulcea [26], A. Bellow [8], and S. D. Chatterji [14]). This remarkable result 
gives the only known characterization of a geometric property of Banach 
spaces in terms of martingales; there are many such characterizations in terms 
of amarts. The net E(XT) may converge strongly, weakly, or weak*; the 
corresponding notions are strong, weak, or weak* amart. A notion properly 
between weak and strong amarts is that of weak sequential amart, defined by 
the property that 2s(ATr(/1)) converges weakly for every increasing sequence of 
simple stopping times (Tn). Let E be a Banach space with the Radon-Nikodym 
property and separable dual. A strong amart of class (B), i.e., such tha 
sup(£||Ar

r||: Tin 2) < oo, converges weakly a.s. [13]. Strong convergence may 
fail [13]; it holds if and only if the Banach space E is finite dimensional 
(Bellow [6]; the proof uses the Dvoretzky-Rogers characterization of finite 
dimensionality in Banach spaces). A reader interested in strong convergence 
should look up Bellow's uniform amarts [7], and also a more general, but still 
probabilistic, notion (the optional sampling theorem holds) of pramart [34]. 
Pramarts that have an L rbounded subsequence converge strongly a.s. in 
Banach spaces with the Radon-Nikodym property (M. Talagrand [41]). Like 
real amarts, uniform amarts and pramarts converge in the discrete case and 
have regular paths in the continuous case, the passage from one to the other 
being accomplished by Doob's method of optional stopping (see B. D. Choi 
and the reviewer [15] and N. Frangos [24]). Weak a.s. convergence holds for 
weak sequential amarts under the same assumptions as for strong amarts, but 
strong amarts have a more impressive Riesz decomposition: The "potential" 
part converges to zero in Pettis norm [22]. Weak amarts of class (B) converge 
weakly a.s. if and only if E is reflexive [10] (the proof uses H. Rosenthal's 
theorem that a bounded sequence in a Banach space has a subsequence that is 
either weakly Cauchy or equivalent to the unit basis in /x). Also, the separabil­
ity of the dual is needed for weak a.s. convergence of strong amarts. This 
difficult result was proved in stages. First W. J. Davis and W. B. Johnson [16] 
gave examples where the dual is not separable and convergence fails; then A. 
Brunei and the reviewer [1Î] proved that separability of the dual is necessary 
for the weak convergence of weak sequential amarts; finally, Edgar [19] proved 
the same for strong amarts. The result of [11] has a corollary that may be 
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stated without amarts and clearly is a basic result in functional analysis. Say 
that a sequence of is-valued random variables converges scalarly if there is a 
random variable X such that for each functional ƒ in the dual E* of £, f(Xn) 
converges a.s. to f(X). Weak a.s. convergence corresponds, of course, to the 
case when the exceptional null set does not depend on ƒ. If the dual is 
separable, then it suffices to consider countably many ƒ's; hence, for bounded 
sequences, scalar convergence implies weak a.s. convergence. The converse, 
that if scalar convergence implies weak a.s. convergence then the dual is 
separable, lies deeper; it is a consequence of [11]. A different way to state this 
result is to say that while the Radon-Nikodym property of the space corre­
sponds to strong a.s. convergence of martingales, the Radon-Nikodym prop­
erty of both the space and the dual corresponds to weak a.s. convergence of 
amarts. This formulation is equivalent, by a theorem of Stegall that the dual of 
a Banach space with the Radon-Nikodym property has this property if and 
only if it is separable. Finally, for set-valued processes in the dual of a Banach 
space, the right notion is the weak* amart. It converges only weak* a.s. (S. D. 
Bagchi [4]), but even martingales cannot do any better (J. Neveu [38]). 

We now discuss amarts indexed by directed sets. The process (Xr &t\ tin J) 
is now indexed by a set / filtering to the right. In this setting essential 
convergence replaces a.s. convergence, but the entire pathology due to the lack 
of total order may already exist in the presence of a countable cofinal subset 
when essential convergence is equivalent to a.s. convergence; therefore we will 
assume that such a set exists, and consider only a.s. convergence. It is known 
that Lx-bounded martingales converge a.s. under Krickeberg's Vitali condition 
V [27; and 39, p. 99]. As recently shown, V is not necessary [33], and a weaker 
condition C is sufficient [36] and necessary (Talagrand [42]). What about VI 
This condition admits of a simple probabilistic formulation in terms of 
stopping times: V holds if and only if for each adapted net of events (At\ 
lim sup At may be approximated in probability by AT with T in 2. A glance at 
the proof of the amart convergence theorem sketched above will suggest that V 
may be the condition appropriate for convergence of amarts, and, indeed, K. 
Astbury [2] proved that V holds if and only if all Lx-bounded amarts converge 
a.s. The connection between V, 2, and convergence is even more basic: V 
holds if and only if the convergence in probability of (XT\ T in 2) implies a.s. 
convergence of {Xt: t in J) [35]. The situation is typical: To each Vitali 
condition there correspond an appropriate class of simple stopping times and a 
class of amarts that converges exactly under this condition. Thus the "ordered" 
Vitali condition V' reads like V except that the stopping times are ordered, by 
which we mean that the values taken on by each T are totally ordered. V' is 
sufficient for convergence of Lx-bounded submartingales (Krickeberg [28]), but 
is not necessary [35]; it is necessary and sufficient for convergence of Lx-
bounded "ordered" amarts [35]. There are other examples: e.g., the Vitali 
conditions Vp9l < p < oo, "multivalued stopping times with overlap bounded 
in L ," and "multivalued amarts" bounded in Lq (1/p + \/q = 1) [34]. (In 
this particular instance martingales can do as well as amarts; see Millet [31].) 
The application mentioned above to martingales in the plane consists in the 
proof that such martingales under conditional independence are amarts with 
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respect to totally ordered filtrations, to which Astbury's theorem applies. 
Similarly, Edgar's additive amarts [20] include John Walsh's strong martingales, 
a generalization of sums of independent random variables in the plane, but 
they also include properly defined strong submartingales (Millet [32]) and 
quasimartingales. Continuous-parameter additive amarts lie still in the future. 
There are also applications to the derivation of set-functions, a setting in which 
the Vitali conditions first appeared. Recall that Fis satisfied on the line—this 
is the original theorem of Vitali that gave the condition its name—and also in 
the plane if the partitions are generated by rectangles such that the ratio of 
sides remains bounded. Now the derivatives of positive superadditive set-func­
tions are amarts and, therefore, converge under V [35]. In imitation of Doob's 
classical observation that derivatives of additive set-functions are martingales, 
we could prove that derivatives of superadditive set-functions are su­
permartingales, but this would not be useful, because supermartingales need 
not converge under V. To be sure, one could also consider the process (XT: T 
in 2), which is a supermartingale, and prove that V' is equivalent to the 
convergence of all such supermartingales [35]; the approach via amarts is more 
general. 

The book under review is composed of two parts. The first part, by Alan 
Gut, based on lectures delivered in 1979, is a clear and competent exposition of 
the real-valued theory indexed by N and -N, as it appeared to the author at 
the time. Some proposed applications now seem rather naive. The Marcinkie-
wicz strong law of large numbers is concerned with processes X_n = n~\Yx + 
• • • 4- Yn)

r, where l < r < 2 o r 0 < r < l , the random variables Yt are inde­
pendent and identically distributed, and Yx is in Lr In the first case (1 < r < 2), 
it is also assumed that EYX = 0; the amart property is now derived from the 
Marcinkiewicz theorem, which asserts the convergence of X_n\ unfortunately, 
this approach does not lead to any applications of the amart theory. In the 
second case (0 < r < 1), if the Y„'s are positive, then X_n is not only an amart, 
but also a (reversed) submartingale, as shown by Edgar and the reviewer [23]; 
thus, this is not an example of "an amart which is not a martingale, sub-
martingale, etc." (p. 30). However, in two parameters the Marcinkiewicz 
averages from a positive, reversed "one-submartingale" that converges if 
L Log L is bounded, because it is an amart with respect to a totally ordered 
filtration [23]. This proof is not included in the book (nor is any other 
nontrivial application of amarts). Nevertheless, on balance, the first part of the 
book could be a suitable exposition of the theory for a reader who did not 
know much about either amarts or martingales. The same cannot be said about 
the second part. 

The second part of the book, by Klaus D. Schmidt, presents an integrated 
exposition of amarts indexed by N and -N. The term integrated is to be taken 
in its mathematical sense: The integral was applied to sequences of random 
variables to transform them into sequences of measures or, as the author says, 
"set function processes". Since simple stopping times take only finitely many 
values, the integration presented no difficulties. There are no new applications. 
Via appropriate Radon-Nikodym theorems, the new theory is essentially 
equivalent to the old one, but simplicity and the probabilistic meaning of 
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stochastic processes and stopping times are lost. In the past the measure-theo­
retic approach sometimes did advance martingale theory: The article of A. E. 
Andersen and B. Jessen [1] anticipated supermartingales (see Doob [17, p. 
630]). Set function processes, however, introduce no new hard arguments. 

In the Banach-valued case the difficult proofs are omitted, and the results 
are sometimes misstated. It is not true that "Every weak amart is a uniform 
amart" (p. 163). Some proofs are incorrectly sketched: On p. 164 it is said that 
"From an example of Brunei and Sucheston [3] it can be seen that the 
separability of the dual is a necessary condition in the weak sequential amart 
convergence theorem." An example, of course, will not do to prove the 
necessity of a condition. The presentation of H. Heinich's and N. Ghoussoub's 
"order amarts" in Banach lattices seems better. On the positive side, in the 
References an effort was made to give a fairly complete list of articles on 
amarts and related topics: 154 items. Comments. A correction to the referenced 
announcement of U. Krengel was published by Brunei and Krengel [9]. Some 
of the listed articles are wrong. Such is the case of papers by A. Korzeniowski 
(first reference) and B. D. Choi, as pointed out by this reviewer in Mathemati­
cal Reviews (see 80a:60070 and 80g:60052). 

In conclusion, in this book deeper aspects of amarts are either completely 
omitted (directed sets and continuous parameter) or presented without proof 
(connection between a.s. convergence and geometry of Banach space). A reader 
interested in the subject would do well to consult some of the articles listed 
below rather than the book. 
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