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Schrödinger equation, the neutron transport equation, Maxwell's equations, 
and the Dirac equation. A notable feature of the book is the treatment of 
second-order elliptic and parabolic problems in L2 and Lp spaces. Fattorini 
does a nice job of explaining the Agmon-Douglis-Nirenberg elliptic machinery 
(in the second-order case), making it accessible to a wide audience. An 
important feature of the book is its extensive and useful bibliography occupy­
ing more than a hundred pages. 
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A basic problem of statistics is to infer something about a parameter or state 
of nature 6 after observing a random variable x whose distribution pe depends 
on 6. A neat, but controversial, solution to this problem of inference is 
provided by the Bayesian approach. Assume that 0 is a random variable with 
distribution m prior to observing JC. The inference is made by calculating qx, the 
conditional or posterior distribution of 0, given x. Hpe and IT have probability 
density functions f(x\0) and g(0), respectively, then qx has density h(6\x) 
given by Bayes's formula 

f(x\e)g(0) 
h{e\x) = lf(x\<p)g(<p)d<p 

h(O\x)ccf(x\6)g(0). 

(1) 

or, briefly, 

(2) 
(For simplicity, assume the densities are with respect to Lebesgue measure. 
However, any a-finite dominating measure will do.) There is no disagreement 
about Bayes's formula. The controversy is about its application and its 
interpretation. 

The two major interpretations of the probability of an event E, both of 
which can be traced back to the seventeenth-century origins of the subject, are 
as the limiting relative frequency of £ in a sequence of trials, or as a measure 
of the degree of belief in the occurrence of E. For the past half century the 
majority of probabilists and statisticians have accepted the frequency interpre­
tation, even though it is of limited application and seems somewhat circular in 
its "dependence" on the law of large numbers. The frequency view is disas­
trous for Bayesian inference because it rarely happens that prior probabilities 
make sense as frequencies. They do make sense when viewed as degrees of 
belief, and this explains why Bayesians are often identified with subjective 
probability (de Finetti (1974), Savage (1954)). However, there have been, and 
are, prominent Bayesians who advocate the use of logical or canonical prior 
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distributions (Jeffreys (1939), Jaynes (1968)). The present author, Hartigan, 
points out that an overview "may be taken from the point of view of a 
subjective probabilist, since subjective probability includes all other theories". 

In addition to their unorthodox interpretation of probability, many Baye-
sians are unwilling to accept the conventional Kolmogorov (1933) axioms. 
Some, like de Finetti, reject the requirement of countable additivity, and 
others, including Hartigan, retain the assumption of countable additivity, but 
allow improper probability distributions that have an infinite total mass. There 
are foundational reasons for these technical heresies, but a simple example will 
illustrate their utility. 

Think of 6 as a physical constant, like the speed of light or the weight of 
some object, and suppose x is a measurement of 0 subject to a normal error 
distribution with mean 0 and variance 1. Thus x is N(0,1). If there is little 
prior knowledge of 0, it is tempting to say that, posterior to x, S is N(x, 1). The 
frequentists make essentially this claim using different language. R. A. Fisher 
(1973) would say that the "fiducial distribution" of 6 is N(x, 1), while many 
others would use the same distribution to construct confidence intervals. Now 
it is easy to see that there is no proper, countably additive prior m having the 
posterior above. However, if m is a finitely additive, translation-invariant 
probability, it does have the desired posterior (Heath and Sudderth (1978)). 
The same posterior can also be obtained from (2) if m is Lebesgue measure or, 
equivalently, if g($) = 1 for all 0. In the past, improper priors have often been 
used formally in (2) and justified by the results. A major virtue of Hartigan's 
book is that a theory of improper probability is developed and Bayes's formula 
is proved. 

Many statisticians now follow Wald (1950) and regard the classical statisti­
cal problems, such as estimation and testing, as statistical decision problems. In 
addition to 6 and x, there are a set of possible actions and a loss function / that 
assesses a penalty 1(6, a) when 0 is the state of nature and action a is taken. 
The decision maker gets to see x before choosing an action d(x), and the 
decision function d is evaluated through the expected loss 

RA9)"fl(8,d(x))pt(dx). 

It hardly ever happens that one decision function is better than all the others, 
and the usual approach is to study the class of admissible decision functions: 
i.e., those d such that there is no d' for which Rd>(0) < #</(#) for all 0, with 
strict inequality holding for some 6. Thus the non-Bayesian decision maker 
must employ some other principle, such as maximum likelihood for estimation, 
and still faces what may be the difficult problem of determining whether the d 
selected is admissible. 

Again the Bayesian, equipped with a prior TT, has a relatively straightforward 
approach. The loss corresponding to a decision function d can now be 
evaluated as 

B(d) = f Rd(0) ir(dO), 
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and one seeks to minimize the real number B(d). Furthermore, this can often 
be done in an algorithmic fashion by choosing d(x) to minimize the posterior 
expected loss 

(3) fl(e,d(x))qx(d$). 

It is somewhat of a surprise and a strong theoretical argument for the 
Bayesians, that, for many problems, all of the admissible decision functions are 
Bayes for some prior m or the limit in an appropriate sense of Bayes decision 
functions. Thus the choice of a decision function is often tantamount to the 
choice of a prior. 

Return to the example of the physical constant 6 and suppose the task is to 
estimate 0 by a function d(x) subject to a loss equal to the square of the error. 
The usual estimator d(x) = x is admissible for this one-dimensional problem, 
but is not admissible for the analogous problem in dimensions n > 3 (Stein 
(1956), discussed in Chapter 9 of Hartigan). This estimator is not Bayes for any 
proper, countably additive prior, nor is it Bayes in Hartigan's improper theory 
(cf. p. 65). However, the estimator is Bayes (even in higher dimensions) with 
respect to a finitely additive, invariant prior. This illustrates Hartigan's point 
on p. 58 that "optimality by a finitely additive probability is rather too easy" 
and suggests that optimality in his theory is a bit too hard. The estimator is 
"formal Bayes" with respect to Lebesgue measure in that it minimizes the 
posterior loss (3). However, it is ruled out by Hartigan's theory because B(d) is 
infinite. 

In addition to the topics already mentioned, Hartigan treats a number of 
others. He surveys some of the techniques for getting a prior and proposes a 
new one based on perceived similarities between observables. Classical and 
some recent work on Bayesian asymptotic theory are presented. Recent work 
of de Robertis and Hartigan (1981) on the extent to which Bayesian proce­
dures depend on the prior m is explained. 

A topic conspicuous by its absence is Bayesian prediction theory. It can be 
argued that prediction problems are more fundamental than the more com­
monly discussed estimation and testing problems (Aitchison and Dunsmore 
(1975), Geisser (1980)). 

The book has the appearance of a textbook, and there are problem sets for 
each chapter. However, the pace is brisk and sometimes hard to follow. (A 
variation of the Daniell integral is developed in about three pages. Properties 
of the integral that have not been discussed are used later.) Terminology is not 
standard. (A "probability space" is not what you think.) The reader who 
overcomes these difficulties will be rewarded by a stimulating and original 
work on current Bayesian theory written by a major contributor to the theory. 
Another selling point for the book is its uncommonly reasonable price. 
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The most important idea in enumerative combinatorics is that of a generat­
ing function. According to the classical viewpoint, if the function f(x) has a 
power series expansion Y%^Qanx

n, then ƒ(x) is called the generating function 
for the sequence an. Sometimes the coefficients bn, defined by 

are more useful; here f(x) is called the exponential (or factorial) generating 
function for the sequence bn. Generating functions are often easier to work 
with than explicit formulas for their coefficients, and they are useful in 
deriving recurrences, congruences, and asymptotics. 

Although generating functions have been used in enumeration since Euler, 
only in the past twenty years have theoretical explanations been developed for 
their use. Some of these, such as those of Foata and Schützenberger [6, 7] and 
Bender and Goldman [2] use decompositions of objects to explain generating 
function relations. Other approaches, such as those of Rota [13], Doubilet, 
Rota, and Stanley [4], and Stanley [14], use partially ordered sets. Goulden and 
Jackson's book is a comprehensive account of the decomposition-based ap­
proach to enumeration. 

In the classical approach to generating functions, one has a set A of 
configurations (for example, finite sequences of 0's and l's) satisfying certain 
conditions. Each configuration has a nonnegative integer "length". The prob­
lem is to find the number at of configurations of length i. One first finds a 
recurrence for the at by combinatorial reasoning; the recurrence then leads to 


