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set of irreducible unitary representations for each real semisimple G that are 
attached to the nilpotent G orbits in Lie(G). Experimental evidence indicates 
that these problems are inextricably connected. Miraculously, their resolution 
should have implications for automorphic forms (cf. [1]). Jantzen has found a 
subject perfectly suited for an advanced text: one which has reached not the 
top of the mountain, but a solid ledge with a beautiful view. 
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1. Function theory in functional analysis. Many branches of mathematics owe 
a debt to classical function theory. This is especially true of functional analysis. 
Here the archetypal application, due to M. H. Stone (in his famous 1932 book 
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—see A. E. Taylor [1971] for history), is the following: Let ^ ( 3f) denote the 
algebra of continuous linear operators on the (complex) Hubert space 3^. The 
equation 

| |7 | | :=sup{ | | r jc | | : j ce j r , | | j c | |< l} 

defines a submultiplicative norm which is complete in ^{J^)\ i.e., it makes 
<%(34f) a unital Banach algebra. The resolvent set 

p(T):= {X G C: T- \ 7 isinvertiblein^(j>f )} 

is open for each T, contains all X with | \ | > ||JT||, and in this set /(X):= 
(T — XI)~l is holomorphic and vanishes at infinity. These facts are very 
elementary and easy to confirm. If p(T) were all of C, ƒ would be an entire 
function, and so by Liouville's theorem it would be identically 0—a manifest 
absurdity. It follows that the spectrum o(T):= C\p(T) is never empty. This 
(now canonical) proof was later used by I. M. Gelfand [1941] to draw the same 
conclusion with an arbitrary (complex) unital Banach algebra in the role of 
&(Jtf). This is the cornerstone of his famous representation theory of com­
mutative Banach algebras. 

2. The space of holomorphic functions. On the other hand, the set H(ü) of 
holomorphic functions on a region 12 in C is a vector space, even an algebra 
with unit. The topology r of uniform convergence on compact subsets of Q 
renders all the algebraic operations in H(ti) (and differentiation as well) 
continuous, and a classical theorem of Weierstrass assures us that H(ü) is 
complete with respect to this very natural convergence concept. Thus H(Q) is a 
topological vector space, even a Fréchet space, since this convergence concept 
can evidently be realized with a complete translation-invariant metric. In other 
words, H(£l) is an example of the kind of objects studied in linear functional 
analysis. Since so much knowledge about H(£l) was accumulated already in the 
19th and early 20th centuries, this is a very useful example both for testing 
general conjectures and for enriching textbook presentations of linear func­
tional analysis; and, indeed, several aspects of the abstract theory (e.g., Montel 
spaces) evolved from this example. On the other hand, some of the powerful 
tools of functional analysis might shed new light on this old friend. It is true 
that some of these tools, like the Baire category theorem, were prefigured in the 
classical investigations of H(Q,)9 but many, like the Hahn-Banach and Krein-
Milman theorems, were not; and these could be expected to lead to new 
knowledge about H(Q,\ as has indeed been the case. Especially when we look 
at certain subspaces of H(ti) which can be made into Banach spaces or Banach 
algebras (with norm topologies stronger than r), like the Hardy spaces Hp 

when Œ is a disc or a half-plane, do we see a rich and fully developed wedding 
of function theory with functional analysis. (For this panorama see K. M. 
Hoffman [1962], P. L. Duren [1970], J. Garnett [1981], and S. D. Fisher [1983].) 
As for H(iï) itself, systematic investigation of it as a topological vector space 
began in the 1950s, with duality questions being foremost in the early work of 
G. Köthe, A. Grothendieck, J. Sebastiâo e Suva and C. L. da Suva Dias. 
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3. The functional analysis viewpoint: duality and approximation. Let us look 
at some of the viewpoints, techniques, and questions about holomorphic 
functions which functional analysis engenders. The most prevalent classical 
context where the matter can be perceived is approximation—e.g., Mergelyan's 
theorem. We wish to approximate a holomorphic function ƒ by polynomials 
(globally), so we want ƒ to lie in the closed linear span of the functions zn. 
Because of the Hahn-Banach theorem, this means that every continuous linear 
functional which annihilates all the zn must annihilate ƒ. It is apparent that 
knowledge about the dual space H(Q)* is therefore important. Or we could 
extend the functional further (by Hahn-Banach) to the space C(S2) of continu­
ous functions on Ü and then use the fact (Riesz representation theorem) that 
the linear functionals on this space are integration with respect to compactly 
supported Borel measures. It is this latter technique which is featured in the 
elegant functional analysis proofs of L. Carleson [1965] and J. Garnett [1968] 
and is pervasive in the monographs cited earlier. This argument can also be 
applied to the more elementary Runge theorem. The measures involved here 
are really quite simple, and it is worthwhile to take a direct approach to them 
via Cauchy's integral theorem. If T is a smooth curve in Q and <p is holomor­
phic in C\K for some compact K c Ö \ T , then $ (ƒ ) := fTfcp defines a 
continuous linear functional on H(Q). That every continuous linear functional 
arises in this way was discovered by L. Fantappiè in his complicated studies of 
"analytic functionals" in the late 1920s. R. Caccioppoli [1931] simplified the 
matter considerably (but the time was not ripe for considering this integral 
formula as a representation of the dual space #(£2)*). The idea here is to write 

3r(z) = hi fr
}cw*w_ z)~1dw 

for appropriate T (after Cauchy's theorem), remember that the integral is a 
limit of Riemann sums locally uniformly with respect to z, pass O through this 
limit (Fubini in disguise), and get $ ( ƒ ) = Jrf<P f° r t n e function 
<p(w) := (27T/)_10( fw)9 where fw(z) = (w — z)"1. Thus the measure mentioned 
above is just <p times arclength of I\ The function cp is called the Fantappiè 
indicatrix of <E>. (In the measure-theoretic approach we have the function 
A(w) = f(w ~ ZYX d\t.(z\ now called the Cauchy transform of /A.) This func­
tion is holomorphic for large w, as one sees by commuting $ with the series 
Tf^=z0z

nw~n~l for fw, and vanishes at infinity. In fact, <p is holomorphic in a 
whole neighbourhood of C \ Œ, but is not quite uniquely determined by O. To 
get unique determination and a satisfactorily complete duality theory, one 
introduces the space H0(C \ Œ) of germs of holomorphic functions defined in 
neighbourhoods of C \ Q and vanishing at oo. Then H(ti)* = H0(C \ ti). 

Particularly illuminating is the case when £2 is a disc (of radius R < oo, say). 
Then it is possible to choose for T a circle; the function cp consequently has the 
form 

00 

<p(w) = £ <pnw-"-\ 
« = 0 
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and for f(z) = E*. 0 fn
z" w« h a v e 

oo 

*(/) = I fan-
n = 0 

Here the numbers <pn = $(z n ) satisfy lim |<p„|1/w < R. Thus we see how the 
duality problem can be viewed from the perspective of sequence spaces (as was 
done by O. Toeplitz already in 1937). Questions about the denseness in H(C) 
of linear combinations of derivatives {/(n): « G Z + } or of translates {Twf: 
w ^ W}9 where Twf(z):= f(z + w) and ƒ is entire, which are naturally 
suggested by the functional analytic viewpoint, are very easily resolved with 
the help of this sequential representation of $. For example (Laurent Schwartz, 
V. Ganapathy Iyer), if W is infinite and possesses at least one cluster point in 
C, then span{ ƒ(w): « e Z + } and s p a n ^ / : w e W) have the same closure; if, 
moreover, ƒ is of minimal exponential type (f(z)e~e^ is bounded for each 
e > 0), then these spans are dense in H(C). 

4. Duality and interpolation. It is an elementary general fact that the dual X* 
of a topological vector space X is itself a topological vector space when 
endowed with the pointwise topology, and that the only linear functional on 
X* which are continuous in this topology are the evaluations at points of X. In 
view of the above-described representations of H(ti)*, this means that each 
continuous linear functional F on HQ(C\ti) is implemented by a function 
ƒ e H(£l) in the sense that, for each <pGi/0(C\f i) , % ) equals the value 
which the functional $, determined by (p, has at ƒ. If we examine more closely 
the mechanism by which germs determine functionals, we see that this means 
the following: For each compact K c Œ there is a contour T = TK in U \ K 
which surrounds K (once with positive orientation) such that 

(*) F(<p)=ff<P, <peH(C\K). 

This aspect of duality is especially useful in dealing with interpolation 
problems. Consider the classic one: Mittag-Leffler's "Anschmiegungssatz". 
The sequence { zn\ n G N} of distinct points of ti has no cluster point in Q, and 
for each n there are given complex numbers {ank: h = 0 , l , . . . ,m r t }. It is 
desired to show that an ƒ e H(ü) exists such that ƒ (k\zn) == ank for all n and 
k. To this end, look at the vector subspace S of H0(C\Q) spanned by the 
functions (w — zn)~

k~l (n G N, k = 0,1,. . . ,mn) and define a linear func­
tional F on S by F((w — zn)~

k~l) = 2irian k/k\. Show that F is continuous, 
extend it to an element of H0(C \ &)*, and implement this extension with an 
ƒ e tf(Q). With K = { zn }, (*) gives 

2man^k/k\ = F((W - zn)~
k~l) = ƒ f(w)(w - zn)~

k~ldw, 

and by Cauchy's theorem this integral equals 2irif(k)(zn). Hence, ƒ has the 
desired properties. 

5. Algebraic questions. Once H(Q) is thought of as a ring, certain interesting 
algebraic questions (not all of which require functional analysis techniques for 
their resolutions) suggest themselves: What are the closed ideals of H(&)1 
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What are the ring automorphisms of H(Ü)1 What are its ring derivations? If 
Z c £2 and N: Z -» N, then the set I(N\ consisting of all g e H(£2) that have 
at each z e Z a zero of order at least N(z), is an ideal and is closed. The 
reason is that differentiation is a continuous linear operator on H(ti), and the 
order of a zero is specified by the vanishing of a derivative. If Z has a cluster 
point in £2, then I(N) = {0}. If Z has no cluster point in £2, then a slightly 
stronger form of the interpolation theorem in §4 furnishes an ƒ e H(ti) that 
has, at each z e Z, a zero of order N(z) and no other zeros in £2. Clearly, then, 
g/f is a well-defined holomorphic function in £2 for each g G ƒ(#) , whence 
I(N)=fH(Q). If h G H(Q), and we take Z = /T^O) and #(z) to be the 
multiplicity of z as a zero of h, then I(N) = hH(ti), so every principal ideal is 
closed. Conversely, if ƒ is a closed ideal, and we take Z = C\{g~l(0): g e ƒ } 
and Af(z) to be the smallest order z experiences as a zero of a function in /, 
then I(N) — fH(Q) for an appropriate ƒ as above. We have I c I(N), and a 
Hahn-Banach argument, using the integral representation of functional, will 
show that / = ƒ( N), so / is principal (theorem of O. F. G. Schilling). It is also 
true that every finitely generated ideal is already a principal ideal (theorem of 
J. H. M. Wedderburn and O. Heimer). But there are nonclosed maximal ideals 
and (theorem of I. Kaplansky) nonmaximal prime ideals. 

Among the obvious ring automorphisms of H(to) are the maps ƒ -> ƒ ° <p, 
where <p is a conformai automorphism of Î2. These are even algebra isomor­
phisms. If i// is a conformai map of 2 onto Î2* := { z: z e £2}, then ƒ -> ƒ o ^ is 
also a ring (but not an algebra) automorphism, since z -> / ( z ) is holomorphic 
on £2* for each ƒ e / / (S) (look at difference quotients!). Conversely, if $ is a 
ring automophism of H(ti), then -1 = $(-1) = $0'2) = [$(0]2> s o t n e con~ 
tinuous function <$(*) on the connected set Q assumes only the values +/. It 
follows that either *( / ) = / or $( / ) - -/. In the first case O has the form 
ƒ -» ƒ o <p; in the second case, the form f -* f °yp (theorem of L. Bers, S. 
Kakutani, and C. Chevalley). To get hold of such a q> or \p9 we note the obvious 
fact that a principal ideal is maximal if and only if it has the form (z — col)i/(J2) 
for some to e S2, and then we exploit the fact that <P must permute these ideals 
among themselves. We let <p(co) denote the unique zero of the principal 
maximal ideal which $ maps onto (z - col)if(£2). Thus, for g e i/(J2), 

$(g)(to) = 0<=>g((p(<o)) = 0, 

so for all ƒ e #(Î2), $( ƒ - /(<p(co))l)(co) = 0; that is, 

• (ƒ)(«)-•(/MwWlKw). 

Now if we know that $ is an algebra automorphism, that is, $ is complex 
linear (resp., conjugate linear), then <I>(/)(co) - /(<p(co)) (resp., ƒ(<?(<*>))) fol­
lows from the above, and, in particular, $(z) = <p or <p. Thus the case of 
algebra maps is easy. The nontrivial part of the theorem is showing that the 
ring map must be either linear or conjugate linear. This characterization of ring 
isomorphisms of H(Q) leads to the following curiosity: since the radius ratio 
R/r is a conformai invariant of the annulus $ 2 = { z e C : r < | z | < j R } , this 
ratio is locked up in the ring structure of H(ti); that is, in principle, it can be 
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expressed in purely ring-theoretic terms. But how? An explicit construction 
was given by A. Beck [1964] and I. Richards [1968]. 

A ring derivation is an additive map A: H(2) -> H(2) which satisfies 
A( fg) = /A g 4- gA/. Evidently, for any h e H(ti), ƒ -> hf' defines such a map. 
And this is the whole story: there are no others (theorem of J. Becker). 

6. Luecking and Rubel's book. I turn now to the book of Luecking and 
Rubel. It is very attractive and quite inexpensive. All the above themes (and 
more) are developed ab ovo. The authors contend that even at the elementary 
level the functional analysis viewpoint is the "right one", and they strive to 
make their account elementary and self-contained. The reader is referred 
elsewhere for proofs of one or two standard facts, like the Stone-Weierstrass 
and Tietze extension theorems, and a one-semester, undergraduate-level com­
plex variables course is a formal prerequisite according to the Preface, but 
actually Cauchy's theorem for a rectangle and the power series development 
that flows from it are all proved in the text. Duality arguments based on the 
integral representation provide a unifying theme. This is presented first for Ü a 
disc (where the sequence-space point of view can also be brought in, as 
indicated in §3 above) and then for general ti. Not all the applications of 
functional analysis are particularly economical or striking; in some cases 
considerable stage preparation, involving the traditional arguments and meth­
ods, is necessary. The verification that this subspace is closed or that linear 
functional is continuous in order to infer theorem S from functional analysis 
result T may involve many of the steps in the classical proof of S. The authors 
acknowledge this and turn it to advantage: sometimes they give both construc­
tive and abstract treatments (e.g., of the Mittag-Leffler theorems), and some­
times in the exercises they indicate refinements of the arguments which will 
convert an existence proof in the text (e.g., that of Runge's theorem) into a 
recipe for constructing the function. They then invite the reader to "note the 
typical contrast between constructive and abstract methods: constructive meth­
ods are stronger in that explicit formulas and estimates are obtained while 
abstract methods are stronger in that more general theorems usually result and 
interesting connections with apparently unrelated problems are often exposed". 

Besides the topics outlined above, there are some Baire category results (the 
holomorphic functions on the disc £2 which have no analytic continuation are a 
residual set in the complete metric space H(2)), the Riemann mapping 
theorem, the strong form of Rouché's theorem and the D. Challener and L. A. 
Rubel converse of it, several interesting interpolation results including interpo­
lation by gap series (where diophantine approximation plays a role), and a 
short final chapter which discusses first-order (in the sense of predicate logic) 
conformai invariants. In connection with the "span of translates" issue raised 
in §3 above, the authors construct an entire function ƒ such that the set { Tw ƒ : 
w e C} of translates itself is dense in H(C) (G. D. Birkhoff, W. Seidel, and J. 
L. Walsh). An elementary construction due to C. Blair and L. A. Rubel is even 
more striking. They manufacture a "triply universal function". This is an 
entire function ƒ such that, for an appropriate choice of constants in the «-fold 
iterated integral ƒ ('n) of/, each of the sequences { /("w)}£Lo> { /( /°}£U> and 
{Tnf}™=0 is dense in H(C). The results about ring isomorphisms and deriva­
tions in H(Q) (§5 above) were extended and simplified quite a bit by the 
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reviewer and S. Saeki [1983]. Both of these latter papers were apparently of too 
recent origin to be included in this book. Actually, this book had apparently 
been in gestation for some time and was adumbrated by the paper of L. A. 
Rubel and B. A. Taylor [1969], which the reader can profitably consult for a 
short excursion into some of the ideas discussed here, as well as some 
variations on the proofs in the book. 

In conclusion, I feel the authors completely achieved their goal and have 
presented their case in a very lively, concise manner. The density of errors is 
very low (but regrettably there is no index). The chapters are short, and each is 
followed by a number of relevant, accessible exercises. The book is rewarding 
reading for cognoscenti and students alike. 
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