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an active and creative scientist. Such details are best left to the historians and 
to the book reviewers, who are usually delighted by the opportunity to fill them 
in. 
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Commutative semigroup rings, by Robert Gilmer, Chicago Lectures in Mathe­
matics, The University of Chicago Press, Chicago, IL, xii + 380 pp., 1984, 
$11.00. ISBN 0-2262-9392-0 

Let R be a commutative ring and S a semigroup with respect to an operation 
-h, not necessarily commutative. The semigroup ring R[X; S] consists of 
formal sums Tt"mmlrlX

s', rt e R, s, e S, with addition defined by adding coeffi­
cients, and multiplication defined distributively using the rule XsX' = Xs+t. 
For example, if N is the semigroup of nonnegative integers, then R[X\ N] is 
just the polynomial ring R[X] in a single indeterminate X. Another important 
example is the semigroup ring K[X\ G], where K is a field and G is a finite 
group. The theory of semigroup rings divides much along the lines of these two 
examples. If R[X] is taken as the starting point, then the tools and problems 
come from commutative algebra; if the starting point is K[X; G], then the 
group G is the primary object of study, and the tools come from group 
representation theory and constitute a rich mixture of many other areas of 
mathematics. It should be emphasized that in the case of K[X; G], the main 
interest is in a nonabelian group G; indeed, a large portion of noncommutative 
ring theory has been developed specifically in order to deal with this example. 
(A nice set of lectures on this aspect of the subject, with the ultimate goal of 
proving a couple of important theorems on finite groups, can be founnd in [6].) 

To get an idea of the shift in emphasis imposed by restricting to a 
commutative semigroup £, as is done in this book, consider the question of 
semisimplicity of K[X\ G]. A ring is called semisimple if its Jacobson radical is 
0. For a commutative ring A, the Jacobson radical J {A) is defined to be the 
intersection of the maximal ideals of A. A related notion is that of the 
nilradical N(A), which is the intersection of the prime ideals of A. The ring A 
is called a Hubert ring if every prime ideal is an intersection of maximal ideals, 
in which case, clearly, N(A) = J(A). The definitions of J(A) and N(A) for a 
noncommutative ring are somewhat more complicated. 

For a finite group G, K[ X\ G] is semisimple, provided that G has no element 
of order p when char K = p > 0; this is Maschke's theorem and is fundamental 
for the classification of the representations of G (cf. [6, p. 244]). The statement 
remains true if, instead of being finite, G is taken to be an arbitrary abelian 
group (cf. [4, p. 73, Corollary 17.8]). To what extent does this latter result 
surface in the present book? The nearest theorem to it that I could find is 
Theorem 11.14, p. 140, which only yields the case that G is torsion-free. On the 



BOOK REVIEWS 271 

other hand, the case of a finitely generated abelian group, for instance, is fully 
covered by putting together a few results: 

(1) Theorem 9.7, p. 103: If G is a finitely generated group, then K[X\ G] is a 
Hubert ring, 

(2) Corollary 9.3, p. 99: If D is a domain of char/? > 0, then S is a 
p-torsion-free semigroup if and only if N(D[X; S]) = 0; 

(3) Corollary 9.14, p. 107: If D is a domain of charO and S is a cancellative 
semigroup, then N(D[X; S]) = 0. 

Thus, this book differs from the definitive works [4, 5] of Passman on group 
rings in that its spirit is closer to that of a polynomial ring over an arbitrary 
commutative ring than to that of a group ring over a field. A sample result 
involving the Krull dimension of R[X; S] is the following: If S is a cancellative 
monoid, then dim R[X\ S] = dim R[X; G] = dim R[{XX}1 where G is the 
quotient group of S and { Xx} is a set of indeterminates whose cardinality 
equals the torsion-free rank of G. This reduces the question of dim R[X\ S] to 
that of the polynomial ring R[{ Xx }]. 

The book begins with a chapter on commutative semigroups, followed by a 
chapter on zero-divisors, nilpotent elements, idempotents, and units of semi­
group rings. There are then two chapters devoted to characterizing various 
kinds of semigroup rings, such as valuation rings, Prüfer rings, von Neumann 
regular rings, factorial domains, and Krull domains. The final chapter dis­
cusses Krull dimension and questions of isomorphism for semigroup rings. The 
author makes an effort to keep the semigroup S and the commutative ring R as 
general as possible, but, as the book progresses, S inevitably gravitates toward 
being a cancellative, torsion-free monoid, i.e., a semigroup with identity which 
can be embedded in a torsion-free group. As for R, it is not even assumed to 
have an identity to begin with, although this condition is readily imposed when 
it becomes expedient to do so. Note that if £ is a semigroup without identity, 
then R[X; S] is a ring without identity even when R has one. 

There are a few brief remarks and references, intended to add perspective, 
interspersed throughout the text and appended to each section. These are 
sometimes so abbreviated that they leave the wrong impression. For example, 
the theorem on p. 76 that a finitely generated monoid S is finitely presented is 
correctly attributed to Redei, but the author fails to mention that the simple 
proof given here using the noetherian property of the semigroup ring Z[X\ S] 
is from the thesis of J. Herzog [1]. Another example is the passing assertion on 
p. 303 that the automorphisms of k[x, y], k a field and x, y indeterminates, are 
not known and the follow-through reference on p. 314 to the Jacobian 
problem. As a matter of fact, the automorphisms of k[x, y] have a long 
history, and there is a good classification of them; the monograph [3] of 
Nagata contains the details. Finally, any book of this length may be expected 
to have a few slips and misprints, and this one seems no exception. A couple 
that especially caught my eye are the reference on p. 21 to a paper of Ohm, 
which should be to another work, and the result of Heinzer-Ohm mentioned on 
p. 277, which is misquoted and is false as stated. 

The book has been written with great patience, in a clean, crisp style, and 
includes almost all the definitions and details that one could hope for. It 
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should make a valuable, easily accessible reference work. Much of the material 
covered is due to the author and his students, and, except for some overlap 
with the recent book [2] of Karpilovsky, most of it cannot be found in other 
books. 
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Differential systems involving impulses, by S. G. Pandit and S. G. Deo, Lecture 
Notes in Mathematics, Vol. 954, Springer-Verlag, Berlin, 1982, vi + 102 pp., 
$8.00. ISBN 3-5401-1606-0 

This book presents and studies a new class of generalized ordinary differen­
tial equations containing impulsive terms linearly. The review first introduces 
the discipline of generalized ODE, briefly describes the contents of the book, 
and offers comments on the treatment in the present literature. Readers 
familiar with the background, and those who do not believe that a book review 
is an excuse for an expository paper, may wish to begin around equation (11). 

Consider ordinary differential equations in Rn, 

x = ƒ(/ , JC) (i.e., dx{t)/dt = ƒ(/ , x(t))). (1) 

If the right side, ƒ: R1+n -> Rn
9 is continuous, it is perhaps obvious what the 

solutions x(') of (1) ought to be: an explicit definition is almost superfluous. 
Applications soon dictated that continuity of ƒ be relaxed. One studies 

'block box systems' 

x = Ax + bu(t) (2) 

by examining the 'responses' x(-) to various 'inputs' M(-); and Laplace 
transform methods suggest that it is the discontinuous inputs that are crucial: 
e.g., a signum function, a unit stepfunction, or even a delta "function". 

With discontinuities present in the term u(-) (the forcing term, or control), 
one can no longer successfully require that solutions x(-) satisfy the differen­
tial equation (2) for all t. Several plausible definitions of generalized solution 
come to mind: 

(A) functions JC(-) that are absolutely continuous (locally) and satisfy (2) for 
almost all t (absolute continuity cannot be relaxed to ordinary continuity 


