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CLASSIFICATION OF FIRST ORDER THEORIES 
WHICH HAVE A STRUCTURE THEOREM 

BY SAHARON SHELAH1 

We first explain the problem, then the solution and various consequences; 
we then discuss the limits and possible criticisms of our solution. Full proofs 
will appear in [8]. 

Let T denote a countable complete first order theory. A model M of T 
is a set \M\ with interpretations of the predicates and the function symbols 
appearing in T as relations and functions on \M\. 

1. The problem. As we view model theory also as an abstract algebra 
(i.e., dealing with any T, not just a specific one), we want to find a general 
structure theorem for the class of models of T like those of Steinitz (for al­
gebraically closed fields) and Ulm (for countable torsion abelian groups). So, 
ideally, for every model M of T we should be able to find a set of invariants 
which is complete, i.e., determines M up to isomorphism. Such an invariant 
is the isomorphism type, so we should better restrict ourselves to more rea­
sonable ones, and the natural candidates are cardinal invariants or reasonable 
generalizations of them. For a vector space over Q we need one cardinal (the 
dimension); for a vector space over an algebraically closed field, two cardinals; 
for a divisible abelian group G, count ably many cardinals (the dimension of 
{x EG: px = 0} for each prime p and the rank of G/Tor(G)); and for a struc­
ture with countably many one-place relations (i.e. = distinguished subsets), 
we need 2**° cardinals (the cardinality of each Boolean combination). 

We believe the reader will agree that every model (|M|,2£), where E is 
an equivalence relation, has a reasonably complete set of invariants: namely, 
the function saying, for each cardinal À, how many equivalence classes of this 
power occur. Also, if we enrich M by additional relations which relate only 
equivalent members and such that each equivalence class becomes a model 
with a complete set of invariants, then the resulting model will have a complete 
set of invariants. 

However, even if we allow such generalized cardinal invariants, we can­
not have such a structure theory for every T, so we have to reformulate our 
problem. 

l . l . THE STRUCTURE/NONSTRUCTURE PROBLEM. Describe for some 
T's a structure theory and prove for the other theories nonstructure theorems 
showing that no structure theory is possible. 
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Let us try to explicate this matter. We define a X-value of depth a: for 
a — 0 it is a cardinal < A, for a — (3 -f 1 it is a sequence of length < 2^° of 
functions from the set of A-values of depth ji to the set of cardinals < A or a 
A-value of depth /?, and for a a limit ordinal it is a A-value of depth < a. 

An invariant [of depth a] for models of T is a function giving, for every 
model of M of T of power A, some A-value [of depth a] which depends only on 
the isomorphism type of M. If we do not restrict a, the set of possible values 
of the invariants is known to be as complicated as the set of all models. This 
leads to: 

1.2. THESIS. A theory T has a structure theory if there are an ordinal a 
and invariants (or sets of invariants) of depth a which determine every model 
(ofT) up to isomorphism. 

We can prove easily, by induction on the ordinal a, that the number of 
N7-values of depth a has a bound 2a(\uj -f 7|) where 

KP 

1.3. COROLLARY OF THE THESIS. If T has a structure theory then there 
is an a such that for every 7, T has < 2a(\u + 7I) nonisomorphic models of 
power N^. 

It is easy to show (assuming, e.g., that G.C.H. holds) that for every a there 
are many 7's such that 3a(|a; + 7I) < 2^^. Thus, if one is able to show that 
the theory has 2*^ models of power N7, this establishes nonstructure. So we 
are lead to a more concrete question: the spectrum problem, i.e., what can 
be the function I given by /(A, T) = the number of nonisomorphic models of 
T of power A. We can hope that a nonstructure theorem should imply it is 
large, whereas a structure theorem should enable us to show it is small and 
even allow us to compute it. 

It was our firm belief that there is such a theory, and that we should 
look at what occurs at large enough cardinals, as in small cardinals various 
"incidental" facts interfere. Notice that a priori there need not be a solution 
to the structure/nonstructure problem or to the spectrum problem: maybe 
/(A, T) can be any one of a family of complicated functions, or, worse, maybe 
we cannot charcterize reasonably those functions, or, worst of all, maybe the 
question of which functions occur is independent of the usual axioms of set 
theory. 

2. Solution. 

2.1. THE MAIN THEOREM. For every T either /(A,T) = 2A for every 
uncountable A, or I(tta,T) < 2(JJl(\a\)\ moreover, every model of T can be 
characterized up to isomorphism by an invariant of countable depth. 

To explain this, we need to consider a related problem, more general and 
vague, which is open-ended. 



FIRST ORDER THEORIES WITH A STRUCTURE THEOREM 229 

2.2. THE CLASSIFICATION PROBLEM. Classify the T's in a useful way, 
i.e., such that for suitable questions on the class of models ofT the partition 
to cases according to the classification will be helpful. 

Notice that "T extends Peano arithmetic" or "T extends ring theory" are 
totally uninteresting for what we seek. Although much has been proved about 
such theories, it seems we cannot say anything on theories failing to have 
these properties. We really look for pairs of properties which we can prove 
are complementary, and each has strong consequences. Note also that for each 
dichotomy we get something on the "simpler" side; though still not all of its 
members have a structure theory, they have "positive" properties interesting 
in their own right (like existence/uniqueness of prime models). 

In fact, five such dichotomies, determined by the properties stable, super-
stable (see [3]), dop, deep (see [4]), and otop (see [8]), are relevant to the 
solution. Fortunately, we can explain those properties. T is unstable if in 
some sense T can define order: for some n and (first order) formula <p for 
every order / there are a model M of T and sequences ât {t G J) of length n 
of elements of M such that in M, <p(öt,ös) holds iff t < s (in ƒ). 

Now we restrict our discussion to stable theories, and here we shall be 
somewhat vague. A theory is unsuperstable if we can define in it a tree with 
cü+1 levels (by UJ formulas); a theory has the dop (dimensional order property) 
if we can define order as above, not by a first-order formula, but by the 
question "is some dimension related to ö5,öt uncountable?" Next, a theory 
has the otop (omitting type order property) if there is a sequence (<£>m|ra < UJ) 
of formulas such that for every order I there are a model M and n-tuples 
ât (t G I) of members of M such that s < tiff there is a fc-tuple c of members 
of M such that <£>m(c,ö5,öt) holds for every m. The property complementary 
to the otop (for a superstable theory) is having prime models over quite a 
number of sets (see below). 

2 .3 . THEOREM. If T is unstable, or stable but not super stable, or has 
the dop or the otop, then f or uncountable À, /(A,T) = 2A. 

There are other facts indicating that such T's have nonstructure properties 
(for logicians: for regular À > No such T have nonisomorphic models M of 
power À which can be made isomorphic by A-complete forcing. Also, for each 
regular À > No there is a function s on the set of the isomorphism types 
of the models of power À of T such that its range is the set of all subsets 
of {6 < X: cî6 = No} modulo the club filter. These facts indicate strong 
nonabsoluteness of the isomorphism type). For all other theories T we shall 
establish a decomposition theorem which implies that the phenomena just 
mentioned do not occur for the theories and À > Hi. 

2.4. Generic examples. To illustrate the properties we give examples, 
"forgetting" the "completeness". Among unstable theories, consider the the­
ories of linear order and of graphs (the formula witnessing that the latter is 
unstable is </>((XQ,XI), {yoiVi)) ="^o52/i are connected"). Among stable non-
superstable theories consider the theory of (^u;,..., En,...), where wu; is the 
set of functions from the natural numbers to the natural numbers, and En is 
the equivalence relation ƒ En g iff (Vra < n)f(m) = g(m); another example is 
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the class of abelian groups (use the formulas xEny if pn\(x — y) for a fixed 
p). For superstable T with the dop, consider the theory of the model M with 
universe 

ooi U {(a, /?, 7) : a ^ /? < a;, 7 < a>i, and [a < /? =>• 7 < a;]}, 

relation P = GUI, and functions Fi, F2 : -FI(Û:) = a, i ^ a ) = a, Fi((a, /3,7)) = 
a, F2((a,/3,7)) = /7 (so we can define an order on P by "the cardinality of 
{x: Fi(x) = a, ^ ( x ) = 6} is countable"). 

An example of a superstable T with the optop but not the dop is a little 
complicated so we omit it. 

2.5. Super stable without the dop and otop (i.e., exactly the theories not 
covered by Theorem 2.3). For any such T there is a kind of structure theorem: 

THE DECOMPOSITION THEOREM. For any model M ofT there is a tree 
I with u levels (e.g., a set of finite sequences of ordinals) and submodels 
Nt (t G I) such that rj < v => N^ C Nu, Nv has power < 2^°, each Nv is 
an elementary submodel of M, the tree is "free" [technically, nonforking; i.e., 
for every rj = v^(a), ifcENv then its type over \J{NT: rj j£ r} is finitely 
satisfiable in Nu\ and M is prime and minimal over \J„eI ^v• 

This tree of models determines the model up to isomorphism (but as the 
tree is not unique it is not the invariant we seek). We still have to ask if the 
tree has an infinite branch. If this may occur, T is called deep. A canonical 
example: the theory of one unary function is deep. Otherwise there is a 
monotonically decreasing function from ƒ to a countable ordinal Dp(T). The 
reader may guess that we have now arrived at T with a structure theorem 
(but as the tree is not unique, we have no yet obtained the invariant). For 
example, we can count the number of possible (N^ : v < rj G I) over Nu by 
downward induction on v G / , proving that 7(Na, T) < 3Wl (|u; + a|), which in 
many cases is smaller than Na. On the other hand, for deep theories we have 
/(A, T) = 2A for A uncountable. 

An example of such a nondeep theory is that having a one-place function 
F satisfying F n + 1 (x) = Fn(x). For this theory I ( ^ , T ) is < Hn_i(|7 + u>|), 
where n > 2. 

3. Consequences. We try to indicate here that many problems in this 
direction can now be solved. 

3.1. Morley's conjecture and the spectrum problem. The relevant test ques­
tion for structure theory was Morley's conjecture, which says that A < \x => 
^(A, T) < /(/i, T) except when A = No < /i, T categorical in Ni, but not in No-
The classification enables us to prove this conjecture. As for the spectrum, 
if T is unsuperstable or has the dop or otop, I (XT) = 2X for A > No, and 
this also holds for a deep T. In the remaining case, if Dp(T) > 0;, a > 0, 
then J(Na,T) = 3Dp(T)(|a; 4- a|). If Dp(T) < w, a > 2*°, then J(Na,T) = 
3Dp(T)-i( |ar) for some fixed 1 < * < 2«° or 7(Na,T) = 3 f c E A < / c ! ( | a | A ) ] , 
where / and k are natural numbers associated with T, and K, is some fixed car­
dinal < (2K°)+. We hope that only the first case occurs and K G {l,No,2**0} 
(this is a "continuum hypothesis" problem), and that the computation can 
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be done for a < 2^° too, but though we know some people believe this is a 
major missing point, we could not make ourselves excited about it. It is, and 
had been, our opinion that the main point is the "main gap theorem", i.e., 
establishing that J(A,T) = 2A or I(#a,T) < ^ ( H ) . 

3.2. On the Loo,A-equivalence. Now we return to the invariant. In the 
mid 1970s several people looked at the problem "for which T are any two 
£oo,A-equivalent models of power < À isomorphic". (LQO,A is an infinitary 
logic in which we allow conjunction of any length, not necessarily finite, and 
(3xo,... ,Xi,.. .)t<a for a < X.) We restrict ourselves to regular À > 2\. In 
the cases where the answer to this problem is positive, the theory Too,A, in the 
logic LQO.AJ of a model can be viewed as a generalized invariant for the model. 
Therefore, a negative answer is a quite strong nonstructure theorem. We can 
prove that for T unsuperstable or with the dop or otop, the answer is negative 
(for regular À > 3i), and for the rest it is positive (so here deepness does not 
imply nonstructure in the present sense). The status of the theory T ^ A 
as an invariant can be viewed as dubious, since the sentences in it contain 
quantification of sequences of variables of any length < À; but we cannot 
make do with quantifications of bounded length, since, for ji < A, LQO,^ does 
not distinguish between sets of power ji and sets of power //+. However, we 
get similar results when we replace the logic LQO,A by the logic L^, which is 
L ^ 3+ enriched by the addition of quantifiers which say that the dimension 
of a vector space (or even of a general dependence relation) is > JX for each 
fx < X. When we come to view the theories T£ in the logics L\ as invariants, 
we notice that the depth of the sentences in TJ is arbitrary (i.e., < À4"), hence 
T£ is not an invariant of bounded depth. Now for nondeep theories, and only 
for them, we can restrict the L^-theories to sentences of countable depth. 

3.3. The maximal number IE{\ T) ofpairwise nonelementarily embeddable 
models ofT of power X. This sounds like a variant of 7(A,T), and we thought 
so until we tried to compute it for deep theories. Restricting ourselves to À 
regular > 2**°, we get the maximum number if T is unsuperstable or has the 
dop or otop. Otherwise, if T not deep, any family of pairwise nonelementarily 
embeddable models has power < 2UJl. In the remaining case (T superstable 
without dop and otop but deep) there is a cardinal /c, not depending on T 
[for logicians, it is the first beautiful cardinal, i.e., the first K, -^->(u;),a;; it is 
strongly inaccessible but smaller than the first measurable and may exist in 
L] such that for À < K,IE(X,T) = 2A, but for any models Ml (i < K) of T, 
for some i < j , M% is elementarily embeddable into M3. 

3.4. Criticism and limits. (A) What about decidability of the theory? 
Just as biological taxonomy does not tell us whether a species is tasty, the 
classificaton here does not deal with decidability. Note that a theory with one 
equivalence relation may have a large Turing degree. 

(B) Why not restrict yourself to universal theories or even varieties? In this 
case you can hope to get more explicit structure theorems. We think the first 
order case is the central one, and it is the traditional focus of model theory. 
In addition, the theory presented here seems the right way to solve those 
problems. If we define a universal theory T (which is not necessarily complete) 
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to be stable if every completion of it is stable, etc., then we get the same results 
as above. Moreover, in the decomposition theorem, N is, in fact, generated 
by \Jrjei Nrj (and we can define "freeness" using only quantifier free formulas) 
(see [7]). Also, our approach has been followed in many investigations and 
results on specified classical theories. 

(C) Why elementary classes? For example, chain conditions are not first 
order; so why not tp G Lu>lUJ or pseudo-elementary classes? Surely it would be 
better to classify larger families. There are quite a few results on these (see [5 
and 3], resp.), but they run into problems independent of ZFC (and solving 
for first order seems to be a preliminary step). 

(D) Why not make the structure theory be over a given structure? Why is 
linear order complicated? Why not let T be uncountable? Those things seem 
to come naturally later, and there is some work on them. 

(E) Is our classification incidental? We have seen some questions solved 
by it. There is considerable work on two others: the Keiser order [2] (coming 
from investigating ultrapowers-see [3, VI]) and the strength of monadic logic 
on models of T (see Baldwin and Shelah [1]). In the investigations of both, 
the classification presented here is widely used. 

(F) Are there not additional properties missing? There are; the best 
known is "being totally transcendental" introduced by Morley. But by one 
of his examples there is a nontotally transcendental T such that I(A,T) = 
Min{2A,Ü2}> so there are theories having the simplest possible invariants 
(short of being categorical) which are not totally transcendental, suggesting 
that the dichotomy t.t -non-t.t is not very useful. More interesting is the 
f.c.p. [introduced by Keisler [2], investigated in [3, II, §4]-see V]. Another 
property is the tree property (see [6]). 

It surely would be interesting to refine the classification of unstable T. 
Moreover, the fact that such a general scheme was proved possible with a 
comprehensible solution, should encourage analogous work on continuations 
and analogous problems. 

REFERENCES 

1. J. Baldwin and S. Shelah, Classification of theories by second order quantifiers, Notre Dame 
J. Formal Logic, Proc. of the 1980/1981 Jerusalem model theory year. 

2. J. Keisler, Ultraproducts which are not saturated, J. Symbolic Logic 32 (1967), 23-46. 
3. S. Shelah, Classification theory, North-Holland, 1978. 
4. , The spectrum problem. I, N£-saturated models, the main gap, Israel J. Math. 43 

(1982), 324-356. 
5. , The classification of non-elementary classes. I, Israel J. Math. Part A, 46 (1983), 

212-240; Part B 46 (1983), 241-243. 
6. , Simple unstable theories, Ann. Math. Logic 19 (1980), 177-204. 
7. , The spectrum problem. Ill: Universal theories, Israel J. Math. 
8. , Classification theory—-Ajjith solution for countable theories, rev. éd., North-Holland (to 

appear). 

D E P A R T M E N T O F M A T H E M A T I C S , T H E H E B R E W U N I V E R S I T Y , J E R U S A L E M , 

I S R A E L 

D E P A R T M E N T O F M A T H E M A T I C S , S I M O N F R A S E R U N I V E R S I T Y , B U R N A B Y V5A 

1S6, C A N A D A 

D E P A R T M E N T O F M A T H E M A T I C S , U N I V E R S I T Y O F C A L I F O R N I A , B E R K E L E Y , 

C A L I F O R N I A 94720 


