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Intersection theory is an old and basic part of algebraic geometry. Algebraic 
geometry is the mathematics of loci defined by algebraic (polynomial) equa­
tions; currently such loci are called schemes. Intersection theory concerns the 
intersection of two schemes meeting in a third; in other words [7], intersection 
theory is "the system of assumptions, accepted principles, and rules of 
procedure devised to analyze, predict, or otherwise explain the nature or 
behavior of' such an intersection. 

The two books under review are complete up-to-date accounts of intersec­
tion theory. The Ergebnisse book offers a detailed treatment; the CBMS book, 
a general introduction. Both present a revolutionary new approach, developed 
by the author in collaboration with MacPherson, which is technically simpler 
and cleaner, yet much more refined and general. To better appreciate the 
subject of intersection theory and the contribution of these books, it is useful 
to know some history. 

Intersection theory was founded in 1720 by Maclaurin, 93 years after 
Descartes promoted the use of coordinates and equations [6, pp. 552-554, 
607-608]. Maclaurin stated that two curves, defined by equations of degrees m 
and n, intersect in mn points. A proof was sought by Euler in 1748 and Cramer 
in 1750. Finally in 1764 Bezout introduced a more refined method of eliminat­
ing one of the two variables from the two equations, producing a polynomial in 
one variable of minimal degree, which he proved is equal to mn. (Euler did so 
independently the same year.) Bezout went on to treat the case of r equations 
in r unknowns [1, p. 292], and so most any theorem of intersection theory 
about projective r-space is called Bezout's theorem. 

Intersection theory remained centered around Bezout's theorem for a cen­
tury and a half. Maclaurin used it to show that an irreducible curve of degree n 
has at most (n — \){n — 2)/2 singular points. Maclaurin and others used it to 
determine the degree of geometrically defined loci. Goudin and du Séjour in 
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1756 [6, p. 554] found that a curve of degree n can have at most n(n - 1) 
tangents with a given direction. Poncelet in 1822 and Plucker in 1834 de­
termined how much the number n(n - 1) has to be diminished when the curve 
has nodes and cusps. Salmon in 1847, generalizing this work to surfaces that 
are singular along a curve, ran into a new problem—the problem of excess 
intersection—which he proceeded to solve; he had to determine the number of 
isolated points in the intersection of three surfaces that pass through a 
common curve. Steiner, in 1848, used Bezout's theorem implicitly and Bischoff, 
in 1859, used it explicitly to find the number of conies tangent to five given 
ones [4]. They correctly found that the six coefficients of the equation of a 
conic tangent to a given one satisfy a homogeneous equation of degree 6, but 
they incorrectly concluded that the number was 65, or 7776. Cremona, in 1864, 
pointed out their error: every double line appears tangent to each of the five 
conies, but there are infinitely many double lines, so the number 65 has no 
enumerative significance. In many questions it is necessary to determine the 
multiplicity of appearance of a point in an intersection. Theoretical work on 
this issue was undertaken by Zeuthen in 1872 and Halphen in 1874, who used 
infinitesimals [9, p. 288], and by Smith in 1874, who used the resultant [1, pp. 
294-295]. 

A revolutionary change in intersection theory took place in 1879 with the 
appearance of Hermann Schubert's book, Kalkïil der abzàhlenden Geometrie. 
Schubert introduced explicitly the first intersection rings and, implicitly the 
operations of pullback and pushout. He applied these tools to enumerative 
geometry with great success, systematized and simplified much earlier work, 
and solved problems that had previously defied attack [5]. 

Schubert's work grew out of Chasles's [4]. In 1864 Chasles gave the first 
theory of enumerative geometry. In particular, he found many valid formulas 
and correct numbers, including the correct number of conies tangent to five 
others, 3264. In 1873 Halphen observed that Chasles's expression for the 
number of conies satisfying five conditions could be factored formally into the 
product of the modules of the conditions. The module of a condition, a notion 
introduced by Chasles, is an expression, am + bn, where a and b are integers 
depending only on the condition, and m and n are variables. When m is set 
equal to the number of conies in a given 1-parameter system that pass through 
a general point, and n to the number tangent to a general line, then the module 
yields the number of conies satisfying the condition. Chasles's expression for 
the number of conies satisfying five conditions is obtained by formally 
expanding the product of the five modules and then replacing each term 
m'n5~' by the number of conies that pass through i points and are tangent to 
5 — i lines. 

Schubert's brilliant leading idea is the following. Represent geometric condi­
tions by algebraic symbols. Given two independent conditions with symbols x 
and y, represent the condition that either one or the other holds by the sum 
x + y, and represent the condition that both hold simultaneously by the 
product xy. Consider the symbols x and y to be equal if the conditions are 
equivalent for enumerative purposes; that is, they are satisfied by the same 
numbers of figures in an arbitrary system, provided only that both numbers 
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are finite. Then the symbols form a commutative ring of functionals on the 
systems. For example, the module of a condition on conies, am + bn, may be 
interpreted as a symbolic expression representing the given condition as a 
linear combination of two symbols m and «, which in turn represent the 
elementary conditions of passing through a point and being tangent to a line. 
In other words, the original condition is equivalent to the alternative condition 
of passing through one of a points or being tangent to one of b lines. Chasles's 
hard-won expression for the number of conies satisfying five conditions is now 
obvious! 

Schubert considered what he called the problem of characteristics to be the 
main theoretical problem of enumerative geometry. The problem is to find, for 
a given sort of figure, a finite number of basic conditions in terms of which an 
arbitrary condition can be expressed. For example, in Chasles's theory a 
condition on conies is expressed as a linear combination of the two elementary 
conditions, namely, to pass through a point and to be tangent to a line. 
Schubert solved the problem of characteristics in a number of cases via an 
appropriate coincidence formula. A coincidence formula is a formula for the 
condition that two figures varying independently should coincide. 

Schubert was not fully satisfied with the mathematical foundation available 
for his theory, but he forged ahead anyway. Philosophically geometry was still 
viewed as a natural science. Schubert based his work on the two great 19th 
century principles of geometry, the Chasles correspondence principle and the 
principle of conservation of number (or law of continuity). The latter has been 
traced back 200 years to Kepler and Leibniz and has had a stormy history [6, 
pp. 385-387, 841, 843-845]; [3]; (Ergebnisse, pp. 193-4). Schubert thought of 
it as saying that a continuous variation in the figures defining a condition will 
not change the number of figures satisfying the condition. The correspondence 
principle is of lesser mathematical depth and consequence; for more informa­
tion see [8, 5] and the Ergebnisse book. Hilbert predicted that providing a 
rigorous treatment of Schubert's work would be one of the great projects of 
20th century mathematics [3]; he proposed it as his 15th problem. 

Thanks primarily to Severi (1912, 1916) and van der Waerden (1930), 
Schubert's ideas are now usually expressed in the following terms: a parameter 
scheme, whose points represent the figures; subschemes, whose points repre­
sent the figures in the various systems; cycles (formal linear combinations of 
reduced and irreducible subschemes) whose "points" represent the figures 
satisfying the various conditions; the intersection product of two cycles, which 
corresponds to the symbolic product of two conditions; numerical equivalence 
of cycles, which corresponds to enumerative equivalence of conditions; the 
theorem that algebraic (or continuous) equivalence implies numerical equiva­
lence, which corresponds to the principle of conservation of number; a 
Kunneth decomposition of the diagonal, which corresponds to a coincidence 
formula; the method of reduction to the diagonal, which is the basis of 
Schubert's method of solving the problem of characteristics given the corre­
sponding coincidence formula; the (deep) theorem of finite generation of the 
cycles modulo numerical equivalence, which implies the existence of a solution 
to the problem of characteristics in every case. 
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Today the term "Schubert calculus" is often used in a limited fashion. This 
is understandable but unjustified. The term is used simply to honor Schubert's 
solution in 1885-1886 of the problem of characteristics for linear spaces of 
arbitrary dimension; in other words, to honor his determination of the natural 
basis of the cycle classes on the Grassmannian. Complemented by the work on 
the multiplicative structure of the intersection ring done by Schubert himself, 
Pieri in 1893-1895, and Giambelli in 1903, this work has been particularly 
significant and inspiring (Ergebnisse Chapter 14; CBMS Chapter 6). 

A new source of motivation for work on the foundations of algebraic 
geometry, in general, and on intersection theory, in particular, appeared in 
1940 when Weil announced that he had solved two outstanding problems in 
number theory; he proved the Riemann hypothesis for fields of algebraic 
functions in one variable over a finite field of constants, and he proved that 
Artin's nonabelian L-functions over such fields are polynomials. However, 
Weil's proofs depended on an analogue of the theory of correspondences; 
specifically, he needed the form of the theory developed by Severi in 1926, but 
he needed it in positive characteristic. There followed an intense period of 
activity, lasting about fifteen years, led by Weil himself. The upshot was a new 
foundation for algebraic geometry, including an algebro-geometric calculus of 
cycles based on a local theory of intersection multiplicities, all valid in any 
characteristic. 

The intersection ring on a nonsingular scheme has for half a century been 
constructed in two separate steps (Ergebnisse, p. 151): (1) developing a 
calculus of cycles and (2) moving one of two given cycles into general position 
so that the intersection cycle becomes well defined. The motion is usually 
parametrized by the projective line, or by a series of projective lines, and then 
the original cycle and its replacement are said to be rationally equivalent. A 
complete rigorous treatment from scratch along these lines, albeit in character­
istic 0, was given in 1952 by Hodge and Pedoe [2]. The 1958 Chevalley seminar 
focused on rational equivalence, and the ring of rational equivalence classes 
was named the Chow ring, in honor of Chow's work in 1956. It would certainly 
be unfortunate, as the author says (Ergebnisse, p. 16; CBMS, pp. 40-41), if, 
because of a name, the importance of the contributions of Severi and his 
followers (e.g., B. Segre, Todd, Zariski, Samuel, Grothendieck, etc.) is forgot­
ten. It would be equally unfortunate to forget that the original idea of an 
intersection ring is Schubert's. 

The third major source of motivation for work in intersection theory is the 
Riemann-Roch theorem. The original theorem, which appeared in 1864, con­
cerns a smooth algebraic curve or compact Riemann surface; it gives a formula 
for the number of linearly independent rational functions that have poles at 
worst of prescribed orders at prescribed points. The theorem has attracted a 
great deal of attention and has been greatly generauzed. In the process much 
ancillary mathematics of independent interest has been developed, including 
sheaf cohomology, Chern classes and K-theory. The theorem is the subject of 
two chapters of the Ergebnisse book and one of the CBMS book. 

The revolutionary approach of the books under review has two major 
aspects: a suggestive point of view and a flexible technical device. The point of 
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view is that intersection theory is primarily concerned with the construction 
and study of operators on cycle classes on singular schemes; the technical 
device will be discussed below. There is no need for a prehminary theory of 
intersection multiplicities nor for a general moving lemma. Indeed, a theory of 
multiplicities is a consequence of the basic constructions. Furthermore, because 
the moving lemma is unnecessary, the schemes involved do not have to be 
quasi-projective, and the theory does not have to be set over a field. This point 
of view of operators actually comes closer to Schubert's original one than does 
the traditional point of view. 

The fundamental operation on classes is now puUback along a regular 
embedding ("regular" means that the subscheme is cut out locally by a 
sequence of functions whose Koszul complex is exact). For example, the 
diagonal map of a smooth scheme is a regular embedding, and the intersection 
product of two cycles is now defined as the pullback of their cartesian product 
along the diagonal embedding. In general, the pullback is constructed by 
degenerating the ambient scheme into the normal cone of the subscheme (a 
bundle, in the case at hand). Correspondingly, a representative cycle is 
degenerated into a cycle on the cone. (In fact, if the cycle is the cycle of a 
scheme, then it degenerates into the cycle of the normal cone in this scheme of 
the scheme-theoretic intersection with the regularly embedded subscheme.) 
Thus the situation is reduced to the far simpler case in which the embedding is 
the zero section of a vector bundle. In this case it is easy to move the cycle so 
that it meets the zero section properly. This device of reduction to the normal 
cone has had an interesting history (Ergebnisse, pp. 90-91). In particular, 
Verdier, in 1974-1975, introduced the operation of pullback along a regular 
embedding of arbitrary dimension and constructed it by reducing to the 
normal cone; although he worked within traditional intersection theory, never­
theless he took a key step forward. 

The device of reduction to the normal cone leads to a number of refine­
ments, whose development occupies a large portion of both books. These are 
the following. The intersection class is, by construction, a well-defined class on 
the set-theoretic intersection, not just on the ambient scheme. If the intersec­
tion is proper (that is, the intersection is of minimal dimension), then each 
component of the set-theoretic intersection appears in the intersection class 
with a certain multipHcity, which is easily seen to be equal to the multipHcity 
that is assigned by other theories. When the subscheme is deformed in a system 
of regular embeddings and simultaneously the cycle is deformed, the pullback 
can be easily compared to the limit of the pullbacks, because the normal 
bundle is a first-order approximation to the ambient scheme, somewhat akin to 
the topologists' tubular neighborhood. It is not hard to see that, when the 
normal bundle is positive, so is the pullback. Degenerating instead to the 
completion of the normal bundle at infinity, expressing the image of the zero 
section in terms of the Chern classes of the normal bundle and the tautological 
class, operating with this expression on the cycle, and pushing the result down, 
we get a lovely formula for the puUback. This formula in turn yields the 
residual-intersection formula, the double-point formula, the excess-intersection 
formula, and Grothendieck's key formula. 
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For the device of reduction to the normal cone to work, it is not necessary 
that the class being pulled back be supported on the ambient scheme. It may 
be supported on any scheme mapping into the ambient scheme. Then the 
pullback is supported on the fibered product. This refinement is very im­
portant, since many questions may be reduced to the case of divisors by 
blowing up. The formal properties of this refined pullback and other operators 
(flat pullback, proper pushout, Chern operators, etc.) are most conveniently 
expressed in the bivariant language developed in Chapter 17 of the Ergebnisse 
book and §10.3 of the CBMS book. 

In the Ergebnisse book intersection theory is developed in detail and from 
scratch. Moreover, it is developed with remarkably few technical prerequisites 
from algebra and algebraic geometry. A basic first-year introduction to the 
theory of schemes through sheaf cohomology should be adequate preparation. 
Nevertheless, it may be necessary from time to time to fill in some additional 
background material. To facihtate the job there are two appendices and many 
references. In sum, the book makes an excellent choice of text for a second-
graduate level course or for an advanced student seminar. 

The first six chapters of the Ergebnisse book contain the basic constructions 
and main theorems. The remaining fourteen chapters depend on these six, but 
not really on each other. These fourteen present additional general theory and 
many applications. Nearly half the material in the book goes under the label of 
example. Most of it is concrete and illustrates the theory. However, the word 
"example" is also used in the sense of corollary, and it may indicate a further, 
but more or less straightforward, development of the theory. Each chapter 
begins with a summary of its contents and ends with a guide to the literature 
and a number of historical notes, making the book more readable and useful. 
Doubtless, the book will become a standard reference. 

The books under review are destined to go through many editions. There­
fore, each generation of readers will serve the next by providing the author 
with a list of errata and comments. The books are well written and may be 
recommended to anyone interested in algebraic geometry. The mathematical 
community owes the author a great debt of graditude for these wonderful 
books. 
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Mathematics is ancient, the computer is new. Both involve the expenditure 
of energy to manipulate symbols and thereby create structure. At the very least 
they complement each other, though they often become corrupting influences. 
Hubert hoped that mathematics could be managed by computation; Godel 
proved that it couldn't. In some quarters limitations on the management of 
computation, e.g., program verification, by mathematics is taken as a measure 
of the immaturity of our understanding of computation. Rejecting those august 
heights of mutual absorption, we find that a pragmatic use of the one by the 
other is healthy for both. 

This book deals with one such use: the computer as a calculator to lend 
credence to conjectures that could be fragments of theorems or suggestive of 
theorems. The conjectures have in common a significant computational com­
ponent. None involves the use of the computer as primarily a manipulator of 
formuale or logical truths. The author is careful to point out that he is 
considering experiments that are driven by numerical computation. In a more 
perfect world an experiment on the computer could invoke both the formula 
manipulation world exemplified by MACSYMA [1] and that recommended by 
the author. Unfortunately the world of the former speaks LISP [2] and the 
latter speaks APL [3] and the two in each other's presence are tongue-tied. 
Someday 

Conjectures of any kind tend to be plastic and tentative. The programming 
language and computing environment used in exploration should have the 
same behavior—programs should be easy to write, test, generalize, and dis­
card. Even more, they should be terse and support a great deal of implicit 
logical and mathematical structure that would otherwise need to be made 
explicit by programming. The author's choice of APL is to be applauded. The 
APL environment, its workspace and library, the terseness of its programs, and 
the ease with which APL programs can be tested and modified make it the best 
available language for the purposes Grenander has in mind. Unfortunately 
there is a viper in this Garden of Eden: Learning to program well in APL is 
considerably more difficult than in any other language. Even though the 
mastery pays big dividends, most casual users are unwilling to make the 
required initial time investment. Other programming languages such as BASIC 


