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COMPLETE EMBEDDED MINIMAL SURFACES OF FINITE 
TOTAL CURVATURE 

BY DAVID A. HOFFMAN1 AND WILLIAM H. MEEKS III2 

A long-standing problem in the theory of minimal surfaces is the con­
struction of complete embedded minimal surfaces with finite topology. Many 
examples of complete properly embedded minimal surfaces in Euclidean three-
space have been constructed, but except for the plane, the catenoid, and the 
helicoid, all the known surfaces have infinite genus. Since it is natural to try 
to develop a theory of the global geometry of embedded minimal surfaces of 
finite type, the lack of examples is a major obstacle. In fact, it has often 
been conjectured that these three examples are the only complete embedded 
minimal surfaces in R 3 of finite topological type. 

In 1980, Jorge and Meeks [3] developed a theory to study the topology of 
complete embedded minimal surfaces in R3 of finite total curvature. (By a 
classical theorem of R. Osserman [4], a complete minimal surface of finite total 
curvature is conformally a compact Riemann surface with a finite number 
of points removed.) They were able to prove that there were no complete 
embedded minimal surfaces of finite total curvature of genus zero with three, 
four, or five ends, and, except for the plane, an embedded complete minimal 
surface of finite total curvature had at least two ends. Recently, R. Schoen 
[5] has proved that the only complete embedded minimal surface of any genus 
with finite total curvature and two ends is the catenoid. The catenoid has 
genus zero, two ends, and total curvature — Air. 

We have found that there exist embedded minimal surfaces of finite total 
curvature of every genus. 

THEOREM 1. For every genus g > 0 there exists a complete embedded 
minimal surface Mg of genus g with three ends and finite total curvature 
-4TT(<7 + 2 ) . 

Using this theorem we have the following corollary. 

COROLLARY. For every nonnegative integer k, except k = 2, there exists 
a complete embedded minimal surface with total curvature equal to — 4/c7r. 

PROOF OF COROLLARY. The examples of Theorem 1, together with the 
plane and the catenoid, give examples of complete embedded minimal surfaces 
of total curvature G = —4irk for every nonnegative integer k except k = 2. In 
[3] it is proved that on a complete embedded minimal surface of finite total 
curvature, G = — 4ir(g + r — 1), where g is the genus and r > 1 is the number 
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of ends. If C = — 87r, g + r = 3 with r > 1. By the results of Schoen and 
Jorge and Meeks mentioned earlier, this is not possible. 

We have constructed the examples of Theorem 1 using the Weierstrass rep­
resentation formulae, giving an explicit conformai immersion of the surface in 
terms of meromorphic functions. In the case of genus one our surface is the 
example of Costa [1], which is constructed using the Weierstrass ^-function 
and its derivative on the square lattice. Costa proved that the surface was 
complete, and it followed from the results of Jorge and Meeks that the surface 
was embedded outside of a compact ball. Our work was motivated by this 
example. In particular, we used a computer to explicitly determine the coordi­
nate functions of this surface and draw it. From the pictures we could see that 
the surface was embedded, possessed dihedral symmetry, and contained two 
orthogonal lines. We then found mathematical proofs of these observations. 
Our examples of higher genus are constructed to possess dihedral symmetry 
and contain straight lines, properties upon which the mathematical proof of 
embeddedness is based. 

THEOREM 2. The surface Mg has the following properties. 
(i) Its symmetry group is the dihedral group of order 4(g + 1) generated by 

reflection in the (x,z) -plane and by a rotation of IT radians about the line in 
the (x,y)-plane making a positive angle of7r/2(g+ 1) radians with the x-axis. 

(ii) The intersection of the (x, y)-plane with Mg consists of g -f 1 straight 
Unes meeting at equal angles at the origin. The planes z = c ^ 0 intersect the 
surface in a single Jordan curve. 

(iii) Mg is the unique embedded minimal surface of genus g with three ends, 
finite total curvature, and symmetry group containing at least 4(g + 1) ele­
ments. 

The surface Mg is constructed from the classical Riemann surface where 
the function y, given by the equation y^+ 1) = zg(z2 — 1), is well defined, by 
removing the points where z equals 1 , -1 , and oc. In terms of the Weierstrass 
representation (see, for example, [3]), the meromorphic functions on Mg are 
constructed from the functions z and y. Specifically, the Gauss map composed 
with stereographic projection is equal to a real constant divided by y, and the 
auxiliary one-form rj is given by rj = {z/y)g dz. 

These and other results will be published elsewhere. 
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