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A POLYNOMIAL INVARIANT FOR KNOTS 
VIA VON NEUMANN ALGEBRAS1 

BY VAUGHAN F. R. JONES2 

A theorem of J. Alexander [1] asserts that any tame oriented link in 3-space 
may be represented by a pair (6, n), where b is an element of the n-string braid 
group Bn. The link L is obtained by closing 6, i.e., tying the top end of each 
string to the same position on the bottom of the braid as shown in Figure 1. 
The closed braid will be denoted bA. 

Thus, the trivial link with n components is represented by the pair (l ,n), 
and the unknot is represented by (si$2 * * • s n - i , n) for any n, where si, $2, • • • > 
sn_i are the usual generators for Bn. 

The second example shows that the correspondence of (b, n) with bA is 
many-to-one, and a theorem of A. Markov [15] answers, in theory, the question 
of when two braids represent the same link. A Markov move of type 1 is the 
replacement of (6, n) by (gbg~x, n) for any element g in Bn, and a Markov move 
of type 2 is the replacement of (6, n) by (6s J 1 , n-hl). Markov's theorem asserts 
that (6, n) and (c, ra) represent the same closed braid (up to link isotopy) 
if and only if they are equivalent for the equivalence relation generated by 
Markov moves of types 1 and 2 on the disjoint union of the braid groups. 
Unforunately, although the conjugacy problem has been solved by F. Garside 
[8] within each braid group, there is no known algorithm to decide when (6, n) 
and (c, m) are equivalent. For a proof of Markov's theorem see J. Birman's 
book [4]. 

The difficulty of applying Markov's theorem has made it difficult to use 
braids to study links. The main evidence that they might be useful was 
the existence of a representation of dimension n — 1 of Bn discovered by 
W. Burau in [5]. The representation has a parameter t, and it turns out that 
the determinant of 1-(Burau matrix) gives the Alexander polynomial of the 
closed braid. Even so, the Alexander polynomial occurs with a normalization 
which seemed difficult to predict. 

In this note we introduce a polynomial invariant for tame oriented links via 
certain representations of the braid group. That the invariant depends only 
on the closed braid is a direct consequence of Markov's theorem and a certain 
trace formula, which was discovered because of the uniqueness of the trace on 
certain von Neumann algebras called type Hi factors. 

Notation. In this paper the Alexander polynomial A will always be nor
malized so that it is symmetric in t and t~l and satisfies A(l) = 1 as in 
Conway's tables in [6]. 
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FIGURE l 

While investigating the index of a subfactor of a type IIi factor, the author 
was led to analyze certain finite-dimensional von Neumann algebras An gen
erated by an identity 1 and n projections, which we shall call ei ,e2, . . . ,e n . 
They satisfy the relations 

(I) e2=eue* = e*, 
(II) etCiiiCt = t/(l + t)2ei, 

(III) ae3 = ej6i if |z — y| > 2. 
Here t is a complex number. It has been shown by H. Wenzl [24] that an 

arbitrarily large family of such projections can only exist if t is either real and 
positive or e±2nt/k for some k = 3,4,5, When t is one of these numbers, 
there exists such an algebra for all n possessing a trace tr : An —> C completely 
determined by the normalization tr(l) = 1 and 

(IV) tr(o6) = tr(6o), 
(V) tr(wen +i) = t/(l + t)2 tv(w) if w is in An, 

(VI) tr(Va) > 0 i f a ^ 0 
(note A0 = C). 

Conditions (I)-(VI) determine the structure of A up to *-isomorphism. 
This fact was proved in [9], and a more detailed description appears in [10]. 
Remember that a finite-dimensional von Neumann algebra is just a product 
of matrix algebras, the * operation being conjugate-transpose. 

For real £, D. Evans pointed out that an explicit representation of An on 
C2 n+2 was discovered by H. Temperley and E. Lieb [23], who used it to show 
the equivalence of the Potts and ice-type models of statistical mechanics. A 
readable account of this can be found in R. Baxter's book [2]. This represen
tation was rediscovered in the von Neumann algebra context by M. Pimsner 
and S. Popa [18], who also found that the trace tr is given by the restriction 
of the Powers state with t = X (see [18]). 

For the roots of unity the algebras An are intimately connected with Cox-
eter groups in a way that is far from understood. 

The similarity between relations (II) and (III) and Artin's presentation of 
the n-string braid group, 

{ « l , 5 2 , . . . , 5 n : SiSi+iSi = 3 i + i 5 t« t + i , S{Sj = SjSi if \i~ j \ > 2}, 

0 
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was first pointed out by D. Hatt and P. de la Harpe. It transpires that if one 
defines gi = y/i{tei — (1 — e^)), the gi satisfy the correct relations, and one 
obtains representations rt of Bn by sending Si to g{. 

THEOREM 1. The number (-(t + l ) / v ^ ) n - 1 tr(rt{b)) for b in Bn depends 
only on the isotopy class of the closed braid bA. 

DEFINITION. If L is a tame oriented classical link, the trace invariant 
VL(^) is defined by 

VL(t) = (-(t + l)/Vt)n-1tr(rt(b)) 

for any (6, n) such that 6A = L. 
The Hecke algebra approach shows the following. 

THEOREM 2. If the link L has an odd number of components, VL(£) is a 
Laurent polynomial over the integers. If the number of components is even, 
VL{t) is \fi times a Laurent polynomial. 

The reader may have observed that the von Neumann algebra structure 
(i.e., the * operation) and condition (VI) are redundant for the definition of 
Visit). This explains why VL can be extended to all values of t except 0. 
However, it must be pointed out that for positive t and the relevant roots of 
unity, the presence of positivity gives a powerful method of proof. 

The trace invariant depends on the oriented link but not on the chosen 
orientation. Let L~ denote the mirror image link of L. 

THEOREM 3. VL~{t) = VL(l/t). 

Thus, the trace invariant can be used to detect a lack of amphicheirality. 
It seems to be very good at this. A glance at Table 1 shows that it distin
guishes the trefoil knot from its mirror image and hence, via Theorem 6, it 
distinguishes the two granny knots and the square knot. 

CONJECTURE 4. If L is not amphicheiral, VL~ ^ VL. 
There is some evidence for this conjecture, but only $10 hangs on it. In 

this direction we have the following result, where b is in £?n, 6+ is the sum 
of the positive exponents of 6, and b- is the (unsigned) sum of the negative 
ones in some expression for b as a word on the usual generators. 

THEOREM 5. Ifb+— 36_ — n-f 1 is positive, then bA is not amphicheiral. 

For b- = 0, i.e., positive braids, this follows from a recent result of 
L. Rudolf [21]. Also, if the condition of the theorem holds, we conclude 
that bA is not the unknot. This is similar in kind to a recent result of D. 
Bennequin [3]. 

The connected sum of two links can be handled in the braid group provided 
one pays proper attention to the components being joined. Let us ignore the 
subtleties and state the following (where # denotes the connected sum). 

THEOREM 6. V L I # L 2 =VLlVL2. 

As evidence for the power of the trace invariant, let us answer two questions 
posed in [4]. Both proofs are motivated by the fact, shown in [10], that rtiBn) 
is sometimes finite. 
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THEOREM 7. For every n there are infinitely many words in Bn+\ which 
give close braids inequivalent to closed braids coming from elements of the 
form Us~lVsn, where U and V are in Bn. 

Explicit examples are easy to find; e.g., all but a finite number of powers 
of s^1S2Ss will do. 

THEOREM 8 (SEE [4 P. 217, Q. 8]). If b is in Bn and there is an 
integer k greater than 3 for which b G kerr t, t = e2lK%lk, then bA has braid 
index n. 

Here the braid index of a link L is the smallest n for which there is a pair 
(6, n) with bA = L. The kernel of rt is not hard to get into for these values 
oft. 

COROLLARY 9. If the greatest common divisor of the exponents ofbE Bn 

is more than 1, then the braid index of bA is n. 

More interesting examples can be obtained by using generators and rela
tions for certain finite groups; e.g., the finite simple group of order 25,920 (see 
[10, 7]). In general, the trace invariant can probably be used to determine 
the braid index in a great many cases. 

Note also that the trace invariant detects the kernel of rt. 

THEOREM 10. For t = e2lx%lk,k = 3 ,4 ,5 , . . . , Vb*(t) = (-2cos7r/A:)n-1 

if and only ifbE ker rt (for b G Bn). 

COROLLARY 11. For transcendental £, b G kerrt if and only ifVb*{t) = 
( _ ( t + l ) / v / t ) n - l . 

For transcendental t, rt is very likely to be faithful. 
There is an alternate way to calculate VL without first converting L into 

a closed braid. In [6] Conway describes a method for rapidly computing the 
Alexander polynomials of links inductively. In fact, his first identity suffices 
in principle—see [11]. This identity is as follows. 

Let L+,L~', and L be links related as in Figure 2, the rest of the links 
being identical. Then AL+ - AL - = (y/t - l/y/i)AL. 

X X 
L+ r-

FlGURE 2 
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For the trace invariant we have 

THEOREM 12. l/tVL- -tVL+ = {Vt-l/Vt)VL. 

COROLLARY 13. For any link L, V L ( - 1 ) = A L ( - 1 ) . 

That the trace invariant may always be calculated by using Theorem 12 
follows from the proof of the same thing for the Alexander polynomial. We 
urge the reader to try this method on, say, the trefoil knot. 

The special nature of the algebras An when t is a relevant root of unity 
can be exploited to give information about VL at these values. 

THEOREM 14. If K is a knot then VK{e27Tl/s) = 1. 

THEOREM 15. VL(1) = ( -2 ) p _ 1 , where p is the number of components 
ofL. 

A more subtle analysis at t = 1 via the Temperley-Lieb-Pimsner-Popa 
representation gives the next result. 

THEOREM 16. If K is a knot then d/dtVK{l) = 0. 

It is thus sensible to simplify the trace invariant for knots as follows. 
DEFINITION 17. If K is a knot, define WK to be the Laurent polynomial 

WK(t) = (l-VK(t))/(l-t3)(l-t). 

Amphicheirality is less obvious for W. In fact, WK~{t) = 1 /£ 4 WK(1/£) . It 
is amusing that for W the unknot is 0 and the trefoil is 1. The connected sum 
is also less easy to see in the W picture. For the record the formula is 

^ W K 2 = WKl + WK2 - (1 - t)(l - t*)WKlWK2. 

COROLLARY 18. A K ( - l ) = 1 or 5 (mod8). 

When t — i the algebras An are the complex Clifford algebras. This to
gether with a recent result of J. Lannes [13] allows one to show the following. 

THEOREM 19. If K is a knot the Arf invariant is of K is WK{Ï)-

COROLLARY 20. A K ( - 1 ) = 1 or 5 (mod8) when the Arf invariant is 0 
or 1, respectively. 

This is an alternate proof of a result in Levine [14]; also see [11, p. 155]. 
Note also that Corollary 20 allows one to define an Arf invariant for links as 
V(i). It may be zero and is always plus or minus a power of two otherwise. 

The values of V at e7™/3 are also of considerable interest, as the algebra An 

is then related to a kind of cubic Clifford algebra. Also, in this case, rt(Bn) 
is always a finite group, so one can obtain a rapid method for calculating 
V (t) without knowing V completely. We have included this value of V in the 
tables. Note that it is always in 1 + 2Z(el7r/3). 

There is yet a third way to calculate the trace invariant. The decomposition 
of An as a direct sum of matrix algebras is known [10], and H. Wenzl has 
explicit formulae for the (irreducible) representations of the braid group in 
each direct summand. So in principle this method could always be used. 
This brings in the Burau representation as a direct summand of rt. For 
3 and 4 braids this allows one to deduce some powerful relations with the 
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Alexander polynomial. An application of Theorem 16 allows one to determine 
the normalization of the Alexander polynomial in the Burau matrix for proper 
knots, and one has the following formulae. 

THEOREM 2 1 . Ifbin B% has exponent sum e, and bA is a knot, then 

Vb, (t) = *e / 2(l + te + t + 1/t - t<'2-\l + 1 4-12)AÖA (*)). 
THEOREM 22. Ifbin B± has exponent sum e, and bA is a knot, then 

rev{t) + tev{i/t) =(r3/2 + r1'2 + tx>2 + t^2)(te^2 + rc '2) 
- ( r 2 + r 1 + 2 + t + t2)A(t) 

(where V = V&A and A = A&A). 

These formulas have many interesting consequences. They show that, ex
cept in special cases, e is a knot invariant. They also give many obstructions 
to being closed 3 and 4 braids. 

COROLLARY 23. If K is a knot and \AK{Ï)\ > 3, then K cannot be 
represented as a closed 3 braid. 

Of the 59 knots with 9 crossings or less which are known not to be closed 3 
braids, this simple criterion establishes the result for 43 of them, at a glance. 

COROLLARY 24. If K is a knot and AK(e27ri/5) > 6.5, then K cannot be 
represented as a closed 4 braid. 

For n > 4 there should be no simple relation with the Alexander poly
nomial, since the other direct summands of rt look less and less like Burau 
representations. 

In conclusion, we would like to point out that the ç-state Potts model 
could be solved if one understood enough about the trace invariant for braids 
resembling certain braids discovered by sailors and known variously as the 
"French sinnet" (sennit) or the "tresse anglaise", depending on the nationality 
of the sailor. See [21, p. 90]. 

The author would like to thank Joan Birman. It was because of a long 
discussion with her that the relation between condition (V) and Markov's 
theorem became clear. 

Tables. A single example should serve to explain how to read the tables. 
The knot 83 has trace invariant 

t ~ 3 ( - l + 2t - 3*2 + 5£3 - 4t4 + 4t5 - St6 + 2t7 - t8). 
Its W invariant is 

* - 3 ( l - * + 2 * 2 - * 3 + *4). 

A braid representation for it is 
- i 2 - 1 2 - 2 • D 

St S2SiS3 «253 m ^ 4 -

Also note that w = e7™/3. 
ADDED IN PROOF. The similarity between the relation of Theorem 12 

and Conway's relation has led several authors to a two-variable generalization 
of VL- This has been done (independently) by Lickorish and Millett, Ocneanu, 
Freyd and Yetter, and Hoste. 
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TABLE 1. The trace invariant for prime knots to 8 crossings, 

knot |bra id rep . | P 0 | p o l ( V ) |V(w) | p 0 | p o l ( W ) 

10 

>11 

'12 

13 

>14 

'15 

>16 

17 
J18 

19 

»20 

21 

I I 3 1 

l i a ^ i a " 1 I 
l i 5 1 
\22l-121* | 

| 1 2 _ 1 1 3 " 1 2 3 - 1 2 " 1 | 

u ^ a i - V i 
U ' V l " ^ | 
I l 7 1 

| l " 1 3 3 2 1 2 3 " 1 2 

| 2 5 1 2 2 1 " 2 | 

| 3 2 1 " 1 2 3 " 1 2 1 2 2 

| 2 3 1 2 4 1 " 2 

| 3 " " 1 1 ~ 1 2 1 1 3 ~ 1 2 " * 3 

| 1 3 ~ 1 2 3 " 1 2 1 " 1 2 3 " 1 2 

| 1 2 " 1 3 ~ 1 2 1 4 " * 2 . 

3 " 1 2 " 1 4 

I 2 5 r 1 2 i - 1 

| 1 2 3 " 1 4 " 1 3 " 1 2 

1 " 1 3 2 2 4 3 " " 1 2 " 2 

| 1 1 1 3 2 ~ 1 3 ~ 2 1 2 ~ 1 

| U 1 2 " 1 1 1 1 2 ~ 1 

| 3 ~ 2 1 2 ~ 1 1 3 2 ~ 3 

| 2 - 2 1 2 " 1 1 4 

| 1 ~ 1 2 1 1 3 " " 1 2 2 3 ~ 2 

| 2 3 1 " 1 2 1 " 3 

J 2 2 l " 2 2 3 l ~ 1 

L | 1 2 " 2 3 2 " 1 3 ~ 2 1 2 " 1 

, | 1 2 " 1 3 4 " 1 3 4 ~ 1 . 

2 1 3 " 1 2 ~ 1 

j | 1 1 2 3 " 1 2 l " 1 3 " 2 2 

j | 1 1 2 2 l " * 1 3 " 1 2 3 " 1 2 

J 1 1 1 2 3 r 1 2 3 3 2 " 1 

>| 1 1 2 " 1 H 2 ' " 1 1 2 " 1 

r | 2 l " 1 2 l ' 1 2 2 l " 2 

. I d a " 1 ) 8 

j | 1 2 1 2 1 2 2 1 

) | 2 1 3 2 1 " 3 

. | 2 3 1 2 2 1 " " 2 2 1 ~ 1 

o 1 
1 | 

- 2 | 

2 1 
1 | 

- 4 | 

- 1 I 

- 3 | 

3 I 

1 | 

2 1 
1 

2 

- 6 

- 3 

- 6 

0 

- 4 

- 3 

0 

- 7 

1-2 

1-3 
| - 4 

1-2 

1-7 

| - 4 

| - 3 

1-1 

| 2 

1-2 
| - 4 

| - 4 

13 

1-1 
| 1 

1 | 

1 0 1 - 1 | 

1 - 1 1 - 1 1 | 

1 0 1 - 1 1 - 1 | 

1 - 1 2 - 1 1 - 1 | 

1 - 1 1 - 2 2 - 1 1 | 

1 - 1 2 - 2 2 - 2 1 | 

- 1 2 - 2 3 - 2 2 - 1 | 

1 0 1 - 1 1 - 1 1 - 1 | 

1 - 1 2 - 2 2 - 1 1 - 1 | 

1 - 1 2 - 2 3 - 2 1 - 1 | 

1 - 2 3 - 2 3 - 2 1 - 1 | 

1 - 1 3 - 3 3 - 3 2 - 1 | 

- 1 2 - 3 4 - 3 3 - 2 1 1 

- 1 3 - 3 4 - 4 3 - 2 1 | 

1 - 1 1 - 2 2 - 2 2 - 1 1 

1 - 1 2 - 2 3 - 3 2 - 2 1 

1 - 1 2 - 3 3 - 3 2 - 1 1 

1 - 1 2 - 3 3 - 3 3 - 2 1 

1 - 1 3 - 3 3 - 4 3 - 2 1 

1 - 2 3 - 4 4 - 4 3 - 1 1 

1 - 1 2 - 2 4 - 4 4 - 3 2 - 1 

1 - 1 2 - 3 5 - 4 4 - 3 2 - 1 

| 1 - 2 3 - 4 5 - 4 3 - 2 1 

1 - 1 2 - 3 5 - 4 5 - 4 2 - 1 

| 1 - 2 3 - 5 5 - 4 4 - 2 1 

| 1 - 2 4 - 5 5 - 5 4 - 2 1 

1 - 1 3 - 4 5 - 5 5 - 3 2 - 1 

| 1 - 2 4 - 5 6 - 5 4 - 3 1 

1 1 - 2 5 - 5 6 - 6 4 - 3 1 

1 - 1 3 - 4 6 - 6 6 - 5 3 - 1 

1 1 - 3 5 - 6 7 - 6 5 - 3 1 

| 1 - 4 6 - 7 9 - 7 6 - 4 1 

| 1 0 1 0 0 - 1 

1 - 1 2 - 1 2 - 1 1 - 1 

1 2 - 2 3 - 3 2 - 2 1 

1 | 

ifâT | 

- i 1 
- i 1 
- i 1 
1 / 3 | 

1 1 
1 1 

-1 1 
1 1 
1 1 

- 1 

-1 1 
- 1 

-iyr 
i 

- i 

- 3 

- 1 

i{S 

1 

1 

11 
1 

i i j r 
i - i j ï 

i - i 

i - i 
i - i 

1-ifiT 
11 

11 

| 3 

1-ifF 
l i j T 
j i J T 

o 1 
o 1 
- 2 | 

o 1 
o 1 
- 4 | 

-1 1 
- 3 | 

o I 
o 1 
o 1 
0 

0 

- 6 

- 3 

- 6 

1 

- 4 

- 3 

1 

- 7 

1-2 
1-3 
| - 4 

1-2 

1-7 

| - 4 

1-3 

1-1 

|o 
1-2 
| - 4 

| - 4 

|o 
1 -1 
|o 

0 

1 

- 1 

1 1 0 1 

1 0 1 

- 1 0 - 1 

- 1 1 - 1 

1 - 1 1 

1 1 1 1 1 0 1 

1 0 1 0 1 

1 1 0 2 0 1 

1 0 2 0 1 

1 1 0 2 - 1 1 

1 - 1 2 - 1 

1 - 2 1 - 1 

- 1 0 - 1 0 - 1 

1 - 1 1 - 1 

- 1 0 - 2 0 - 1 

- 1 0 - 2 1 - 1 

1 - 2 1 - 1 

- 1 1 - 2 1 - 1 

| 1 - 1 2 - 1 1 

| 1 - 1 2 - 1 1 

1 - 1 1 - 2 1 - 1 

1 1 - 1 3 - 1 1 

1 - 1 1 - 2 2 - 1 

1 - 1 1 - 3 1 - 1 

1 1 - 2 2 - 1 1 

1 - 1 2 - 2 2 - 1 

| 1 1 0 3 - 2 2 - 1 

| 1 - 2 3 - 2 1 

1 - 1 2 - 3 2 - 1 

1 - 1 3 - 3 3 - 1 

| 1 1 1 1 1 

| 1 0 1 

| 1 - 1 1 - 1 
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TABLE 2. The trace invariant for some divers knots and links. 

l i n k | p n i p o l ( V ) | V ( w ) | p Q | p o l ( W ) I b r a i d r e p . 

1 0 i > i i ( 1 ) | - 2 | l - 2 3 - 3 4 - 3 2 - 2 1 \ ijT | - 2 | - 1 1 - 1 1 - 1 | 2 " 4 1 1 2 2 2 1 
I l 1 1 1 I 

K T ( 2 ) | _ 4 | _ i 2 - 2 2 0 0 1 - 2 2 - 2 1 | l | - 4 | 1 - 1 1 0 - 1 1 - 1 | 1113323""*1 ~ 2 2 . 

I l I I I I a - W 1 

C ( 3 ) | - 4 | - 1 2 - 2 2 0 0 1 - 2 2 - 2 1 | l | - 4 | 1 - 1 1 0 - 1 1 - 1 | 2 2 2 1 3 " * 2 " 2 1 . 

I l I I I 2 - l 1 3 - l 
I l I I I 
I l I I I 

z\ |1/2 1-10-1 1-1 | 112 

42 <4> |a /2 1-10-11-1 1-1 | 114 

A\ ( 4 ) | 1 /2 1 - 1 1 - 1 0 - 1 | i | | l2"* 1 122 

52 I - 7 / 2 U - 2 I - 2 I - I | i | | l 2 _ 1 1 2 " 2 

6* U/2 1-10-11-11-1 | JT | 116 

e | I3/2 I-11-22-21-1 | - i I I2221121"1 

6* 1-3/21-12-22-31-1 |vfT | |2 l" 123" 12123" 1 

H 1
 ( 5 ) | 1 / 2 1 - 1 1 - 1 0 - 1 | 1 | | 1 2 _ 1 1 2 2 

( 5 ) I - A / 9 i i - m - m - i l - i I I 1 2 ~ 3 1 
1 

H2 < ° ' 1 - 3 / 2 1 1 - 1 0 - 1 0 - 1 l - i | | 1 2 °122 

W < 6 ) 1 - 3 / 2 1 - 1 1 - 2 1 - 2 1 l - i | | 1 1 2 2 1 ~ 1 2 " 2 

6* 1-1 | l - 1 3 - 1 3 - 2 1 livjTl | 2 2 l " 1 2 2 1 - 1 

6^ 1-3 1 - 1 3 - 2 4 - 2 3 - 1 | l | I 12~112""112""1 

6^ I2 I1OIO2 |l | I 122122 

A ( 7 ) |5/2 1-10-32-34-22-1 |31 | |11222333 

B ( 7 ) |5/2 1-10-32-34-22-1 |3i | |11122333 

Table Notes 
(1) Compare 85 which has the same Alexander polynomial. 
(2) The Kinoshita-Terasaka knot with 11 crossings. See [12]. 
(3) This is Conway's knot with trivia Alexander polynomial. See [20]. 
(4) Same link, different orientation. 
(5) These links have homeomorphic complements. 
(6) The Whitehead link. 
(7) Two composite links with the same trace invariant. 
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