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B M O ESTIMATES AND RADIAL G R O W T H 
OF BLOCH FUNCTIONS 

BY B. KORENBLUM1 

1. Introduction. A real harmonic function u(z) in the open unit disk D 
belongs to the (real) Bloch space B if 

(1) ||U||B = sup{(l - |^|2)|gradtx| : z G D} < oo. 

The importance of the class B in both complex and harmonic analysis is 
highlighted by the following facts: 

(a) If ƒ(z) is a univalent analytic function in D, then u{z) = log | f'(z)\ G B 
and \\U\\B < 8; conversely, if u(z) G B and \\U\\B < 1, then there is a univalent 
analytic function f{z) in D such that u(z) = log|/ '(z)| (see [5, pp. 32, 172]). 

(b) The functions u G B coincide (up to a constant) with the derivatives 
(d/dx)U(relx) of harmonic functions U(z) such that U(elx) belongs to the 
Zygmund class A* (see [6, Chapter 7, §3]). 

Integrating (1) yields the following "trivial" estimate (we assume u(0) = 
0): 

(2) N * ) l < ^ H l B l o g i i j f | ( * € D ) . 

However, for Lp norms of u(z) on circles \z\ = r (0 < r < 1) a much deeper 
estimate, due to J. G. Clunie and T. H. MacGregor [1], holds (p > 0): 

/ i r27r \ V P 

(3) M v ) | | p = ( ^ y Hre^dxJ < Ap\\u\\B^\\og(l - r)\, 

where Ap are some constants (the case p = 2 was proved earlier by T. M. 
Flett [2, p. 71]). As shown in [1], (3) implies that 

(4) lim M y g \ , = 0 V J r - i - | l o g ( l - r ) | ï 
for almost all x whenever 7 > 1/2. 

The need to better understand the nature of such "nontrivial" estimates 
as (3) and (4) is the main motivation of this paper. In this context the use 
of the BMO norm for estimating Bloch functions on the circles \z\ = r looks 
more promising, since both norms are invariant under Möbius shifts of the 
argument. 

In what follows, a simple but sharp BMO estimate for Bloch functions is 
proved. This estimate, together with the John-Nirenberg theorem [3], is then 
used to obtain a stronger form of the asymptotic estimate (4). 
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2. BMO est imate. 
DEFINITION 1. B is the real Banach space of (real) harmonie functions 

u(z) in D modulo constants with norm (1). 
DEFINITION 2. BMO is the real Banach space of (real) 27r-periodic func­

tions f(x) G L2(0,27r) modulo constants with norm 

(5) H/HIMO = sup{UP(z) - \Uf(z)}2: z € D} < oo, 

where Uf (z) is the Poisson integral of f{x). It is easily seen that 

(6) Up(z)-[Uf(z))* = ±]o {f(t)-Uf(z)fP(t,z)dt, 

where P(t, z) is the Poisson kernel 

P(t,z) 1 
pit _ ~ | 2 

3 1 

1 - s ? 
(riç is the outward normal to <9D at ç = elt). 

REMARK. The norm (5) is sometimes called the Garsia norm; it is equiv­
alent to the original Nirenberg BMO norm (see, e.g., [4, p. 329]). 

THEOREM 1. LetueB and fr(x) = u(reix). Then 

(7) UMIBMO < 2 - 1 / 2 | M | B ^ | i o g ( l - r 2 ) | (0 < r < 1). 

PROOF. By Green's formula (̂  = ezt), 

' ? - * 
i u g | 

w — z 

1 r27r ft 

us?{z) - [ufr(z)? = ^ J Hre) -u{rz)]2^rlog 

zw 

w — z 

|gradu(rw)\ dA% 

dt 

(l-r*\w\2y2dAw, 
11 — zw | 

where dA^ is the Euclidean area element. The latter integral represents a 
superharmonic function V(z) in D such that V(z) = F(|^|) and V(l~) = 0. 
Therefore, msx{V(z) : z G D} = V(0) and 

I I / T I I B M O 

= 2r2||u||2B 

1, 

f | l o g p | ( l -
JO 

r'pT'pdp 

= i N | 2
3 | l o g ( l - r 2 ) 

which completes the proof. 
REMARK. The example u(relx) = rCosx shows that the constant 2""1/2 

in (7) is sharp. The example 
oo 

u{reix) = J2rknCos(knx), 
n = l 

where k > 2, shows that ^/| log(i — r2) | cannot be replaced by a function of 
slower growth (cf. [1]). 
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3. Exponential estimate. 

THEOREM 2. There are positive numerical constants c and C such that 
for all u{z) e B, u(0) = 0, 

(8) f2nexp\ cMre%*)\ \ dx<C (o < r < 1). 

PROOF. By the John-Nirenberg theorem [3] the distribution function m(y) 
of an ƒ G BMO satisfies (y > 0) 

m(y) = meas{x G (0, 2TT) : \f(x) - /(0,27r) I > y} 

<27rexp{-72//||/| |BMo}, 
where /(O,2TT) is ^n e average value of ƒ on (0,27r) and 7 is a positive numerical 
constant. Assuming /(O,2TT) = 0, (9) implies 

(io) CAwtL}diiC-
where C is another numerical constant. Putting ƒ = fr and applying (7), we 
obtain (8). 

4. Radial growth. 

THEOREM 3. There is a numerical constant K such that, for every u(z) G 
B, u{0) = 0, 

(11) lim s u p - 7 = Mre™)l < „ | y | B 

r - i - VI M l - 0 1 log I log(l - r)\ ' HB 

for almost all x. 
PROOF. (8) implies that (0 < r < 1) 

f1 dr f2" \ c\u{reix)\ \ 

Jo (l-r)\og2(e/l-r)J0 *** { ||tx||B>/|log(l - r*)\ J 
dx<C. 

Therefore, for almost all x, 

f 
Jo 

1 c\u(relx)\ . , 

/o ( l - r ) l o g 2 ( e / l - r ) " \\\u\\By/\log(l-r*)\ 
which implies that 

lim / ( 1 + r ) / V - ^ ) - M o g - 2 ( e / l - p ) e x p ( - ^ M ^ L = = } dp = 0. 

Putting ju(r, x) = min{|u(petx)| : r < p < (1 + r)/2}, we get 

(12) lim ( „ „ C ^ ? t - 2 1 o g | l o g ( l - r ) | U - o o . 

Thus, for almost all x, as r —• 1~, /z(r, x) ultimately becomes 

< c 1 | H | B V / | l o g ( l - r ) | l o g | l o g ( l - r ) | , 

with some other constant ci. On the other hand, (1) shows that the oscillation 
of u(p, x) on the interval r < p < ( l+ r ) /2 does not exceed \\U\\B, which proves 
(11) with K = c\. 
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