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#51 Define xn by xn = xn_1 + 2*w-2> xo = 0, xx = 1. Prove that for 
n > 8, xn is not an integer. 

#68 Find, asymptotically, the number of lattice points in the disc x2 + y2 

^ R2 SLSR -^> oo. 

#73 Given n points in the unit square, there is a shortest curve connecting 
them. Estimate the longest this curve can be. 

#82 Show that if f(x) and ƒ"(*) are bounded, then f\x) is. (Here 
f(x) e C2, and the domain is the whole line.) 

#90 Can the positive integers be partitioned into at least two arithmetic 
progressions such that they all have different common differences? 

#96 Show that 1 + n/\\ + n2/2\ + • • • + nn/n\ ~ \en. 
# 109 At each plane lattice point there is placed a positive number in such a 

way that each is the average of its four nearest neighbors. Show that 
all the numbers are the same! 

BRUCE REZNICK 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 11, Number 1, July 1984 
©1984 American Mathematical Society 
0273-0979/84 $1.00 + $.25 per page 

Clifford analysis, By. F. Brackx, R. Delanghe, and F. Sommen, Research Notes 
in Mathematics, Vol. 76, Pitman Advanced Publishing Program, Boston, 
1982, 308 pp., $19.95. ISBN 0-2730-8535-2 

1. Clifford analysis. What is Clifford analysis? The general answer is that it is 
the development of a function theory for functions which map Rn into a 
universal CHfford algebra with a goal being to generalize to this setting 
properties of holomorphic functions of one complex variable. Other goals are 
to relate the monogenic functions, the functions which correspond to holomor­
phic functions in Clifford analysis, to distributions with values in a CHfford 
algebra and to study the duals of monogenic functions. 

In this first section we define universal CHfford algebra and introduce 
topological and algebraic structures and spaces of test functions and distribu­
tions with values in a certain CHfford algebra; although of a rather technical 
nature, we need these basic definitions and concepts at our disposal in order to 
be able to compare the CHfford analysis with previous work and to obtain an 
understanding of CHfford analysis in its generaUty as presented in the book 
under review. In subsequent sections we wiU discuss motivation for the study 
of CHfford analysis and topics in the analysis, and we wiU make some 
conclusions concerning this book. 
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Let Vns, 0 < s < n, n > 1, be a real «-dimensional vector space with basis 
{ex, e2,...,en] and provided with a bilinear form (a\b)9 a9b e J^5, such that 

(e,|e)) = 0, / #y , 

(e,|e,) = 1, / = 1,...,$, 
(e^e,) = - 1 , I = J + 1,...,/!. 

Let iW denote the power set of JV = {l,...,w}. Let C(Vns) denote the 
2n-dimensional real vector space with basis 

{eA =zeal^a2 ••• eak-
A = { «1, «2, . . . ,«* } G PiV> 

1 < ax < a2 < • • • < «^ < w }, 

where the product is defined by 

eAeB = ( _ 1 ) »( (^w) ( _ 1 ) , ( ^B ) ( ^ A B 

and the distributive law with S = {l,...,s}9 n(A) being the number of 
elements in A e 7W, and 

p(A9B)= T,p(A,j)9 p(A,j) = n{ieA:i>j}. 
j*B 

Writing e0 = e0, one can check that e0 is the multiplicative identity in C(Vn 5), 
and we have e,^ = - e ^ , , / # ƒ In fact C(P^5) is a linear, associative, 
noncommutative algebra over R1 and is called the universal Clifford algebra 
over V„tS after W. K. Clifford [5]. 

C(Vlt0) is (is isomorphic to) the complex numbers C1. C(V20) is the algebra 
of real quaternions. C(V3 3) is the Pauli algebra. C{VAl) is the Dirac algebra. 

The construction of Clifford algebras by purely algebraic means can be seen 
in [4,43, or 39]. The Clifford algebra under consideration in the book under 
review is C(Vn>0) which will be denoted J*' in the remainder of this review. 

An element a 6 j / i s called a Clifford number and can be written as 

a = Y,aAeA, A e. PN, aA e R1. 
A 

The conjugate (involution) of a e S/ is defined by 

â = ZaAëA whereë, = ( - l ) " ^ ^ + 1 > / 2 ^ . 
A 

For a = JLA
aAeA Pu t lalo = ao> ^ coefficient of e0. An inner product on s# 

can be defined by putting 

(a,b)0 = 2n[ab]0, a, best, 

and then a norm on J/ can be defined by 

Mo - ((<*> <*)o)1/2. 
We have that J& is a finite-dimensional real ^-algebra. 

The concept of unitary left (right) j^module is defined exactly as in the 
algebraic setting. The algebraic structure of the set of all monogenic functions 
and the algebraic structures of the various spaces of distributions with values 
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in a Clifford algebra are those of unitary ^modules. Any concept that we 
define for unitary left j^module can be similarly defined for unitary right 
j^module, and similarly all results obtainable for "left" are also obtainable for 
"right". 

Let X(l) and y(/) be unitary left ̂ modules. A mapping T: X(l) -> 7(/) is a left 
j/-linear operator if for all ƒ, g e X(l) and û € i , T{af + g) = aT(ƒ) + T(g). 
If y(/) = s/9 T is called a left j/-linear functional on * ( / ) and T(ƒ) = (T, ƒ). 
A^ denotes the set of all bounded left ^linear functionals on ^T(/) and is a 
submodule of the unitary right ^module of all left ^linear functionals on 
Xyy Let Ö be an open subset of Rw. D(Q\ sf) denotes the unitary bi-j^module 
(i.e. both left and right) of j^valued infinitely differentiable functions in Ö 
having compact support contained in fl. Any element ƒ (x) G D(Ö; ^ ) has the 
form/(x) = J-,AfA(x)eA> wherefA(x) e Z>(H; R1), the Schwartz test space. The 
set of all bounded left .^linear functionals on 2)(/)(S2; st) (i.e. D($L\ sf) 
considered as a left j^module) is the space Dfc(Q; s/)oî left ̂ distributions in 
S3. Similarly, we define S(Rn; sf) and tempered left ̂ distributions S(*)(RW; s/) 
corresponding to the Schwartz spaces ̂ (Rn) and y(Rn), and E(Q; s/) and 
the left ^distributions with compact support in S, E*t)(Ü\ jtf\ corresponding 
to the Schwartz spaces <f (Rw) and <f'(R"). 

Representation results for the j^linear functionals are important for calcula­
tions in the book and are obtained by using the fact that ,9/ is a trace algebra, 
with the trace r being given here by 

r(ab) = (a, b)0, a,b G J / . 

The duals Xfo of certain unitary ̂ modules X^ are characterized in terms of 
real linear functionals; a Hahn-Banach theorem, a Riesz representation theo­
rem, and several other fundamental properties for the Clifford analysis setting 
are proved by reduction to classical results. 

Clifford analysis then is concerned with the study of functions of the form 
f(x) = T,AfA(x)eA,fA: Rn -> R1, which generalize the holomorphic functions of 
one complex variable, and seeks to develop a function theory for these 
functions which generalizes the theory of holomorphic functions. The book 
under review does this for the Clifford algebra s/, studies the j^hnear 
functionals defined on these functions, and relates these functions to .^distri­
butions. 

2. Motivation for Clifford analysis. The use of the Clifford algebra of real 
quaternions, C(F20), as a tool in mathematical physics was greatly diminished 
after the development of vector calculus, which began about 1880; from this 
time until approximately 1970 only sporadic activity in both mathematical 
analysis and physics occurred with respect to research in quaternionic analysis 
and, more generally, Clifford analysis. Since about 1930 Clifford algebras have 
been studied in relation to the theory of spinors; see [4,29, and 44] for 
example. Further, Clifford algebras and spinors have been studied extensively 
in the algebraic sense during this period. Analytically, a flurry of activity was 
begun in approximately 1930 by Fueter (see §3.1 below) and was continued by 
his colleagues until the late forties. 
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In the middle to late sixties quaternionic and Clifford analysis were revived 
in both mathematical analysis and mathematical physics. The authors of the 
book under review have been most responsible for the development of a 
function theory in arbitrary Clifford analysis, and Delanghe [8-11] has been 
the leader in this effort. I leave to these authors to state their motivation in 
studying Clifford analysis. 

The motivation for the revival of Clifford analysis, and more specifically 
quaternionic analysis, in mathematical physics is noted in the very interesting 
article [14] where it is argued that calculations involving complex quaternions 
—quaternions with complex numbers as coefficients of the basis 
elements—suggest relativistic generalizations of quantum theory and a new 
spin- \ wave equation. Recently complexified quaternionic analysis has been 
discovered to play a role in problems in electrodynamics and in analyzing 
four-dimensional a-models and Yang-Mills fields. (See [26 and 33-35]. See also 
[54] for spin- \ massless field results using complexified quaternionic analysis 
and for related references.) 

3. Topics in Clifford analysis. We now present a discussion of the major 
topics in the book under review with emphasis on the history of the topic and 
its connections with related subjects. 

3.1. Monogenic functions. The original analysis of quaternion valued func­
tions of a quaternion variable by Hamilton [28] and his followers was devel­
oped as a theory of several real variables; they did not consider any special 
class which corresponded to the holomorphic functions of a complex variable. 
Such a consideration was not made until the work of Fueter [19-22] beginning 
in approximately 1930. Fueter defined a class of quaternionic functions that 
are analogous to the holomorphic functions, and he chose the Cauchy-Rie­
mann method to do this. He called a quaternion valued function 

f(t + xi+>>j + zk) 

of the quaternion variable t + x\+ y\ + zk left regular (right regular) [20, p. 
310] if 

(1) 17=0 ( / r - 0 ) 
(see (4) below) where T is the generalized Cauchy-Riemann operator 

Fueter developed a function theory for his regular functions which included 
analogues of the Caucy theorem, Cauchy integral theorem, Liouville's theorem, 
and Laurent series. A bibliography of the work of Fueter and his collaborators 
is contained in [27]. 

In 1973 Deavours published the article [7], which had as a primary purpose 
the introduction of the work of Fueter to readers in the United States. In 1979 
Sudbery [56], noting the still relative obscurity of the Fueter theory, gave a 
self-contained account of the basic quaternionic analysis together with some 
new results. Sudbery showed that the choice of Fueter to define his regular 
functions as those which satisfy the Cauchy-Riemann condition (1) was the 
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correct choice to obtain a function theory which appropriately generalizes the 
concept of holomorphic function in complex analysis. A theory of quaternionic 
power series leads to a class of functions which is too large for its elements to 
be called regular because such a theory will be the same as a theory of 
quaternion valued real analytic functions on R4 [56, p. 205]. On the other hand 
if one defines a quaternionic function to be regular if it possesses a quater­
nionic derivative in the usual sense, then the class of functions which would be 
regular consists of only constant and linear functions [56, Theorem 1, p. 206], 
which is too small a class of functions to be comparable with holomorphic 
functions in complex analysis. 

The concept of monogenic function studied in the book under review is a 
generalization of the holomorphic functions in complex analysis to functions 
with values in the universal Chfford algebra J / = C(Vn0). Let fl be an open 
subset of Rm+1, where m < «, with n being the dimension of the subspace Vn 0 
of Shaving {ex, e2,... ,e„} as basis. Define the generalized Cauchy-Riemann 
operator D by 

A function ƒ e C^fi; s/) is said to be left (right) monogenic in Q if and only if 

^ D = ^ <* a , . 

(4) *=° A " 

fc = 0 A OXfc 

in Î2. M(r)(S; st) (Af(0(B; s/)) will denote the right (left) j^-module of left 
(right) monogenic functions in Ö. In the case of J / = C(PI,O)> the complex 
number system, (4) becomes the Cauchy-Riemann system when m = n = 1. 
We note that the regular function of Fueter is not a special case of the 
monogenic function; the regular function is a quaternion valued function of a 
quaternion, a 4-dimensional domain point, while monogenic functions having 
values in C(F20) have as domain an open subset of Rw+1, with m + 1 being at 
most 3 since m < n = 2 for monogenic functions in this case. Certainly, 
however, the monogenic functions are motivated by the regular functions, and, 
as in the case of the regular function, the use of the generalized Cauchy-
Riemann system (4), rather than a power series or derivative definition, to 
define monogenicity is the correct method to obtain a theory which corre­
sponds to that of the holomorphic functions in complex analysis. In this book 
the authors develop a general function theory for monogenic functions. Chf­
ford analytic versions of Cauchy's theorem, Cauchy's integral formula, maxi­
mum modulus theorem, Morera's theorem, Taylor series, Laurent series, mero-
morphic function, Mittag-Leffler theorem, Liouville theorem, residue theory, 
and Cauchy residue theorem are obtained. 

A function theory for functions with values in an arbitrary Chfford algebra 
had its beginnings in the early forties [1,42]. But a systematic study of Chfford 
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analysis was not begun until the middle to late sixties; the papers [8-11, 30, 
and 32] must be mentioned in this regard. The four papers of Delanghe [8-11] 
lay the foundation for the basic properties of the monogenic functions pre­
sented in the book under review. 

3.2. Partial differential equations. Recall that the equation Df = 0 given in (4) 
reduces to the classical Cauchy-Riemann system for holomorphic functions of 
one complex variable in the case m = n = 1. Similarly, the equation Df = 0 of 
(4) is equivalent to a linear system of 2n homogeneous partial differential 
equations of the first order with constant coefficients for ƒ e C\Q; s/\ 
-*- C(Vmfi). 

In [13] Doughs studied elliptic systems of partial differential equations that 
can be decomposed into canonical subsystems of 2r equations with 2r un­
knowns and two independent variables [13, pp. 260-261]; he called such 
canonical systems generalized Beltrami systems if the equations are homoge­
neous and contain no terms of order zero in the dependent variables. Doughs 
showed with the aid of a commutative associative algebra that the generalized 
Beltrami system could be written in a shortened form noted in (5) below. The 
algebra used was a commutative associative algebra over the reals generated by 
two elements i and e subject to the multiplication rules 

ï2 = - 1 , ie = ei, er = 0. 
The elements of this algebra are the linear combinations with real coefficients 
of the 2r linearly independent elements ek, iek, k = 0,1,.. . ,r — 1, where 
e° = 1. An element of the algebra can be written ££«oc*e*> where ck, k = 
0,1,. . . ,r - 1, is a complex number, and the element is called a hypercomplex 
number. A hypercomplex function is a function from the (x, y) plane into this 
algebra and has the form 

r - l 

k = 0 

where each fk(x, y% k = 0,1,. . . ,r - 1, is complex valued. The generalized 
Beltrami system of Doughs can now be written 

(5) A / = 0 

where A is the differential operator 

A = •=— + i-r- + ea^- + eb-r-ox oy ox oy 

with a and b being coefficients in the system. A continuously differentiable 
hypercomplex function ƒ(*, y) which satisfies (5) is called a hyperanalytic 
function, and Doughs developed a function theory for the hyperanalytic 
functions. (We note that [13] contains several references to other publications 
which involve the algebra used by Doughs in studies of elliptic equations. Also 
given are references which concern more general commutative algebras in 
association with generalized function theory and which concern the study of 
partial differential equations associated with the work of Fueter and in which 
noncommutative algebras are used.) 
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Gilbert and Hue ([24,25], and further papers), building upon the work of 
Doughs, have considered more general systems, which take the shortened form 
of a hypercomplex equation with the use of the commutative associative 
algebra of Doughs, and solutions of the hypercomplex equation are called 
generalized hyperanalytic functions. Gilbert and Hile developed a function 
theory for the generalized hyperanalytic functions. 

Of course the algebra used by Doughs and Gilbert and Hile is not a 
universal Clifford algebra since it is commutative. But the point is that the 
study of systems of partial differential equations with solutions having values 
in an algebra has existed for quite some time and is in the spirit of the book 
under review with a function theory being developed for the hyperanalytic 
functions. 

In addition to developing a function theory for the left (right) monogenic 
functions, the authors of Clifford analysis also study the equation Df = g, 
where g is an element of a given class of functions or distributions and D is the 
differential operator of (3). In particular if g e 2?(r)(Q; J / ) ( e Dfc(Q; J / ) , 
e 5(5)(R

m+1; s/)\ Û being an open subset of Rm+1, the authors prove that 
there exists ƒ e £ ( r )(Q; s?) ( e Dfc(Q; sf\ e SfaQK"*1; sf)) such that Df = 
g. The proofs use partition of unity techniques in the setting of Clifford 
analysis. These results are an extension to Clifford analysis of classical results 
concerning the solution of partial differential equations with distribution 
solutions. The first investigations of this type were undertaken at approxi­
mately the same time by Ehrenpreis [15-18] and Malgrange [40] who proved 
the existence of solutions to the equation PT = S [15, p. 883], for S in various 
spaces of functions or distributions, including the Schwartz distributions <2>\ 
and P a partial differential operator. Both Ehrenpreis and Malgrange extended 
some of their results to systems of partial differential equations. Hörmander 
[31] showed that PT = S had a solution T e 9" if S e 5f'. Investigations of 
this type continue corresponding to more general partial differential operators. 
(On p. 196 of the book under review the references [E2] and [E3] are incorrect. 
The second paper in this series of papers by Ehrenpreis, of which there are 
four, is omitted. The correct references to this series of papers are given in the 
bibliography of this review in [15-18].) 

3.3. Duality in function theory. Analytic functionals. Recall that M(r)(fl; s/) is 
the right j^module of all left monogenic functions which map 2 c Rm+1 into 
J/== C(VnJ0), m < n. A problem considered in the book is to characterize the 
dual M(*r)(B; s/% the set of all bounded right j^hnear functionals on 
Af(r)(Q; s/)9 and the bidual of M(r)(Q; s/). The results are that M(*)fr(8; J * \ 
the set Af(*r)(8; J#) provided with the strong topology, is topologically isomor­
phic to the set M(/)(RW+1 \ $2; s/)^, a certain left j^module of right mono­
genic functions in Rm+1 \ B which is endowed with the inductive limit topol­
ogy. The isomorphism is defined with the aid of an extension of the notion of 
the indicatrix of Fantappiè to the Clifford analysis setting. Because 
M(*)A(B; s/) is topologically isomorphic to M ( / ) (R m + 1 \B ; j / ) i n d , the set 
Af(*r)(Q; sf) is called the space of analytic functionals in Q in analogy with the 
classical situation which we mention in the next paragraph. Further, the strong 
dual of M ( / ) ( R m + 1 \ S ; j / ) i n d is topologically isomorphic to M(r)(B; J / ) ; 
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hence M(r)(£2; J/) is reflexive. The proofs of the duality results rely upon 
Runge type theorems for monogenic functions. 

The results are completely analogous to the historical situation for duality in 
function theory. An extensive summary of the work in duality in function 
theory, begun by Fantappiè and continued by Sebastiâo e Silva, Köthe, 
Grothendieck, Tillmann and others, is contained in [36] along with an exten­
sive reference Hst concerning this and related analysis. 

3.4. Distributional boundary values and integral transforms. The classical 
distributional boundary value problem can be described as follows. Given a 
distribution (generalized function) U on some set, say R1 or Rw embedded in C1 

or Cn, construct holomorphic functions which have U as boundary value in the 
distribution topology as the imaginary part (real part) of the complex variable 
approaches zero and specify the growth of the holomorphic functions which do 
this. Conversely, given holomorphic functions with the specified growth prove 
the existence of a distributional boundary value and recover the holomorphic 
function from the boundary value. Further, show, if possible, that the boundary 
value mapping becomes a topological isomorphism between the space of 
distributions and a space of holomorphic functions defined by the specified 
growth. 

As an example of this problem let us consider the original results of 
Tillmann [59, p. 110] for the tempered distributions^" = <¥"(Rn) correspond­
ing to tubes in Cn defined by the quadrants in Rn. Let a = (ol9... ,a„) denote 
any of the 2n n-tuples whose components are 0 or 1. Consider the growth 

(6) \f{z)\ < MU (l + \Zj\2)mj\yj\-^-\ z = x + iy<E (C1 \ t f )", 

where M is a constant, (ml9...,mn) is an «-tuple of nonnegative real numbers, 
and (kv...,&„) is an n-tuple of nonegative integers. We define the boundary 
value mapping of f{z) by 

(7) BV(/(z))= lim L ( - l ) w / ( x + ie^), 
6-+0+ a 

where \a\ = ox + • • • 4- on and ya = ((-1)%... ,(-l)a"). Tillmann proved that 
if f(z) is holomorphic and satisfies (6) in (C^R1)", then BV(/(z)) exists in 
the strong topology of &" as an element of Sf'\ conversely, any U e <?' is the 
boundary value of a holomorphic function which satisfies (6) in (C1\R1)W. 
The set of pseudo-polynomials [59, p. 112] is the kernel of BV(/(z)). &" is 
algebraically isomorphic to the quotient space of holomorphic functions in 
(C^R1)" satisfying (6) with the pseudo-polynomials as kernel under the 
boundary value mapping BV(/(z)); and the isomorphism subsequently was 
proved to be topological when the holomorphic functions are endowed with a 
suitable topology. Further, the holomorphic function f{z) can be recovered 
from its boundary value BV( f(z)) by a certain Cauchy integral of BV( f(z))\ 
and the restriction of f(z) to each of the tubes defined by the 2n quadrants 
Ca = { j e Rw: (-V)ajyj > 0, j = l, . . . ,n} can be recovered by the Fourier-
Laplace transform of components of the inverse Fourier transform of the 
boundary value which have support in the dual cone Ca of Q. 
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The original paper on representing distributions as boundary values of 
holomorphic functions was by Köthe [37] who proved that a generalized 
function defined on a closed curve in the extended complex plane has a 
representation as a limit similar to (7) of two functions, one holomorphic in the 
interior of the domain bounded by the curve and the other holomorphic in the 
exterior. Tillmann [57] generalized Köthe's theory to unbounded domains in 
C1 and to functions of several variables defined on regions in Cn that are the 
product of unbounded domains in the plane; in particular Tillmann's theorems 
apply to half planes in C1 and to generalized half planes in C" defined by the 
quadrants Ca in Rn. In [57] Tillmann obtained a characterization of the 
holomorphic functions which represent the distributions of compact support 
$' == < '̂(Rn); the Cauchy integral of $' elements is used in this analysis. 
Subsequently, Tillmann considered the 3}'LP = @'LP(Rn) distributions in [58] 
and the S?' distributions in [59]. In the boundary value problem for <2>'LP, the 
Cauchy integral of such elements is used. 

The distributional boundary value process has important physical applica­
tions. In quantum field theory and other applications in physics the holomor­
phic functions need to be defined in tubes in Cn defined by quadrants, light 
cones, or more generally open connected cones in Rn in addition to half planes 
in C1. The distributional boundary value U in the tube setting is interpreted to 
be the vacuum expectation value in a field theory. U is the Fourier transform 
of a distribution V with support in the dual cone of the cone that defines the 
tube, and the holomorphic function can be recovered as the Fourier-Laplace 
transform of V. For functions in tubes defined by a light cone and applications 
in quantum field theory, see [55] and [6] and the references given there; also see 
[49] for results and an extensive reference list. 

For functions in tube domains in Cn defined by arbitrary open connected 
cones in Rn the most important and original distributional boundary value 
results have been obtained by V. S. Vladimirov in [61 and 62] and in his papers 
referenced there. 

In addition to the Cauchy and Fourier-Laplace integrals, the Poisson 
integral of a distribution can be used in certain cases to recover the holomor­
phic functions from their distributional boundary values even in the most 
general tube domain setting. 

To this point in this section we have concerned ourselves with holomorphic 
functions and generalized functions that are complex valued. Many of the 
results surveyed have been extended to vector valued distributions and holo­
morphic functions, distributions and functions with values in a locally convex 
topological vector space for example. The first such results were obtained by 
Tillmann in [60]. An excellent survey of the vector valued results obtained up 
to 1977 is contained in [41]. Included in this survey are comments concerning 
ultradistributions as well as distributions; and the survey includes work of 
Komatsu, Konder, Körner, Martineau, Meise, Petzsche, Roumieu, Vogt, and 
others associated with this topic. Additionally we must note Sato and other 
excellent authors [47, 38] in the development of hyperfunctions, a concept 
which utilizes the boundary values of holomorphic functions in the generalized 
function sense. 
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Now let Ü be an open set in Rw and x e fl. Let û c Rm+1 be a certain 
neighborhood of S2. In the book under review boundary values of monogenic 
functions are obtained in the sense that the existence of the limits 

BV+(/)= lim f(x + x0), BV-( / )= lim f(x-x0)9 

BV(/) = B V + ( / ) - B V - ( / ) 

are studied. Here (x + x0) e Q and the boundary values are obtained on R. 
Boundary value results for monogenic functions are obtained in which ele­
ments of Dfc(Q;_s/)9 S(5)(Q; st\ and £(*)(RW; s/) are the boundary values. In 
the case of 5(*)(B; s/) the monogenic functions which obtain these boundary 
values are characterized by a growth in the Clifford norm that resembles the 
growth (6) of Tillmann in the scalar valued case. The proof of the existence of 
boundary values of monogenic functions in 5^(0; J / ) closely resembles that 
of Tillmann for the scalar valued case. If U e ^ )(Rm ; s/) a Cauchy integral 
C(JJ\ x)9 x = x + x09 is constructed such that 

(C/,<J>) = lim f <t>(x)(C(U; x + x0) - C(U; x - x0)) dx9 *o-»o+ ^ir 

* € D ( / ) ( i r ; j / ) , 

with C{U\ x) being left monogenic and satisfying a growth condition in the 
Clifford norm which characterizes those monogenic functions having 
E^(Rm'9 s/) boundary values in the topology of Dj*l)s(R

m; s/); these results 
closely resemble the corresponding scalar valued case for generalized functions. 

The reader probably is familiar with L. Schwartz's proof that the Fourier 
transform is a topological isomorphism of S?= y(Rn) onto itself [48, p. 249], 
with the same being true for 6/" = y(Rn), where the Fourier transform 
U = F[V] of an element V e y is an element of 9" defined by the Parseval 
relation [48, p. 250] 

(U9*) = (V9F[4>])9 $*<?. 

A Fourier transform is defined on S(/)(R
W; s/) (S(r)(R

m; s?)) and on 
Sfa(Rm; s/) (S*r)(R

m; s/)) in the function and .^linear functional sense, 
respectively, both of which exactly parallel the scalar valued case. The same is 
true of Clifford spaces corresponding to the spaces 3>9 «2T, 3' and %' and 
corresponding to the results of Ehrenpreis and Gel'fand and Shilov regarding 
the Fourier transform relation of these spaces. In fact it is intriguing how 
closely the Clifford analysis results related to the Fourier transform in 
5(

55)(R
m; s/) and in Z)(*)(R

m; s/) resemble the classical situation. As another 
example, the S(*)(R

m; s/) Fourier transform of an element in Efo(Rm
9 s/) is a 

Clifford analytic Fourier-Laplace integral which satisfies the classical growth 
in Clifford norm; this together with the converse yield the Paley-Wiener-
Schwartz theorem in the Clifford analysis setting. As still another example, the 
boundary value of the Clifford analytic Laplace (Fourier-Laplace) transform 
of an element V e SfcQBF; s?) having various support properties is the 
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Sfc(Rm; s?) Fourier transform of V, and this Laplace transform is a mono­
genic function which satisfies a growth in CUfford norm similar to the growth 
in the scalar valued case. Conversely, a monogenic function satisfying this 
growth has as boundary value the Fourier transform of some V e S^QH"1; s/) 
and the Laplace transform of F has this same boundary value. 

4. Conclusions. Topics included in the book in addition to those discussed in 
§3 are the construction of Hubert modules with reproducing kernels and 
extension of the classical HL2 and H2 spaces and their corresponding Bergman 
and Szegö kernels to the setting of monogenic functions, analytic functions and 
functionals on the unit sphere, L2 functions on the unit sphere, a generalized 
Fourier-Borel transform, and a generalized Radon transform. 

As noted in §2 a revival of quaternionic and CHfford analysis occurred in 
the late sixties, with the authors of this book being the leaders in the study of 
CHfford analysis. This book is the only one pubHshed to this point which 
surveys the work in CHfford analysis since 1970. In the past year several 
important papers in this subject have appeared which give evidence of the 
continuing interest in the subject; these are [45,46, and 51-54]. In addition, 
several papers related to CHfford analysis appear in [23]. Other authors are 
beginning to be interested in CUfford analysis in their research; for example we 
reference Zayed [63] who presents Hardy space results for functions with 
values in a CHfford algebra. Because of the renewed interest in CHfford 
analysis in both mathematical analysis and mathematical physics, a broad base 
has been estabUshed for continued research in this area. The pubHcation of the 
book under review is thus especially appropriate and timely now; it will 
become a fundamental reference for anyone pursuing this subject. 

As noted in this review the CUfford analysis contained in this book is with 
respect to the real finite-dimensional CUfford algebra s/. The complexification 
of CHfford analysis in the general setting has begun in [46]; here the CUfford 
analysis is extended to an analysis over complex finite-dimensional Clifford 
algebras (i.e. the scalar coefficients in the CUfford numbers are complex 
numbers instead of just real numbers). As previously noted, complexified 
quaternionic analysis has been developed and has proved useful in mathemati­
cal physics [26,33-35,54]. The further development of complexified CHfford 
analysis will certainly be undertaken in the future. CUfford analysis wiU 
continue to be used in analysis of systems of partial differential equations, and 
classical topics concerning complex analysis will be extended to the CUfford 
analysis setting as in [63]. 

The book under review has several nice structural features. A Hst of symbols 
is given at the beginning of the book with the section number where the 
symbol is introduced; as I read the book I continuaUy found myself looking 
back at this Hst to recaU symbols. At the end of each chapter the authors have 
written a section of notes concerning the chapter and a bibUography of source 
material and related work; in the notes the authors have included historical 
comments concerning the material of that chapter as weU as comments 
concerning the structure of the analysis in the chapter in some cases. These 
notes are especially helpful in understanding the development of the subject. 
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An additional bibliographic list is included at the end of the book as are a 
complete author index and a word and phrase index. 

The book contains some errors, but these are more typographical in nature 
than mathematical. We do note that on p. 14, line 2 | , (7/x)(/) = T{f)\x, 
ƒ e X(/), T e L(X(/), y(/)), JU e J / , is not well defined since 7(/) is a unitary left 
j/-module; on p. 19, line 3Î , 2w / 2 | (r,/>^|0 should be 2n/2\(T9 f)AeA\0; on 
p. 297, line 181, "Laplace" should be "Fourier". The book has been published 
by photolithographic reproduction of the typed manuscript, and a number of 
symbols have been typed incorrectly or completely omitted in the manuscript. 
The omissions include absolute value symbols, inequalities, subscripts, and 
Greek and script letters. In Chapter 1 s? is typed rather than A in several 
places; on p. 34, last Une,s/is missing; on p. 38, line 7Î , the subscript 1 is 
missing; on p. 93, line 6 j , Pk(x) should be Pkf(x); on p. 212, last Une, a is 
missing; on p. 256, line 13i , 5(/) should be S*ty, on p. 261, line 7 | , < is 
missing; on p. 280, line 10 4, the upper limit oo is missing on the first 
summation. These are some of the approximately 40 omissions and incorrectly 
typed symbols that I saw in the book. However, none of the errors or 
omissions in the typing impede the reading of the mathematics; in every case 
the authors' intention is easy to see. 

Clifford analysis is an excellent summary of the research conducted mainly 
by the authors over the past 16 years. It is clearly written. It is a timely 
publication because of the renewal of interest in quaternionic and Clifford 
analysis in mathematical analysis and mathematical physics and will become 
an indispensable source for researchers in the subject. 

REFERENCES 

1. P. Bosshard, Die Cliffordschen Zahlen, ihre Algebra und ihre Funktionentheorie, Thesis, 
Universitàt, Zurich, 1940. 

2. F. Brackx, On (k)-monogenic functions of a quaternion variable, Function Theoretic Methods 
in Differential Equations, Pitman, London, 1976, pp. 22-44. 

3. , Non (k)-monogenicpoints of a quaternion variable. Function Theoretic Methods for 
Partial Differential Equations, Lecture Notes in Math., vol. 561, Springer-Verlag, Berlin, 1976, pp. 
138-149. 

4. C. C. Chevalley, The algebraic theory ofspinors, Columbia Univ. Press, New York, 1954. 
5. W. K. Clifford, Mathematical papers, Chelsea, New York, 1968. (See especially pp. 

266-276 = Applications of Grassmann's extensive algebra, Amer. J. Math. 1 (1878), 350-358.) 
6. F. Constantinescu, Analytic properties of nonstrictly localizable fields, J. Math. Phys. 12 

(1971), 293-298. 
7. C. A. Deavours, The quaternion calculus, Amer. Math. Monthly 80 (1973), 995-1008. 
8. R. Delanghe, On regular-analytic functions with values in a Clifford algebra, Math. Ann. 185 

(1970), 91-111. 
9. , Morera*s theorem for functions with values in a Clifford algebra, Simon Stevin 43 

(1969-1970), 129-140. 
10. , On regular points and Liouville's theorem for functions with values in a Clifford 

algebra, Simon Stevin 44 (1970-1971), 55-66. 
11. , On the singularities of functions with values in a Clifford algebra, Math. Ann. 196 

(1972), 293-319. 
12. R. Delanghe and F. Brackx, Hypercomplex function theory and Hilbert modules with 

reproducing kernel, Proc. London Math. Soc. 37 (1978), 545-576. 



BOOK REVIEWS 239 

13. A. Douglis, A function-theoretic approach to elliptic systems of equations in two variables, 
Comm. Pure Appl. Math. 6 (1953), 259-289. 

14. J. D. Edmonds, Quaternion quantum theory: new physics or number mysticism'}, Amer. J. Phys. 
42 (1974), 220-223. 

15. L. Ehrenpreis, Solution of some problems of division. I: Division by a polynomial of derivation, 
Amer. J. Math. 76 (1954), 883-903. 

16. , Solution of some problems of division. II: Division by a punctual distribution, Amer. J. 
Math. 77 (1955), 286-292. 

17. , Solutions of some problems of division. Ill: Division in the spaces &)', 3tf, âA, 0, 
Amer. J. Math. 78 (1956), 685-715. 

18. , Solution of some problems of division. IV: Invertible and elliptic operators, Amer. J. 
Math. 82 (1960), 522-588. 

19. R. Fueter, Analytische Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 4 
(1932), 9-20. 

20. , Die Funktionentheorie der Differentialgleichungen Aw = 0 und A AM = 0 mit vier-
reellen Variablen, Comment. Math. Helv. 7 (1934/1935), 307-330. 

21. , Uber die analytische Darstellung der regularen Funktionen einer Quaternionenvari­
ablen, Comment. Math. Helv. 8 (1935/1936), 371-378. 

22. , Zur Theorie der regulàren Funktionen einer Quaternionenvariablen, Monatsh. Math. 
43 (1936), 69-74. 

23. R. P. Gilbert (Editor), Plane ellipticity and related problems, Contemporary Math., Vol. 11, 
Amer. Math. Soc., Providence, R. I., 1982. 

24. R. P. Gilbert and G. N. Hue, Generalized hyperanalytic function theory, Bull. Amer. Math. 
Soc. 78 (1972), 998-1001. 

25. , Generalized hypercomplex function theory, Trans. Amer. Math. Soc. 195 (1974), 
1-29. 

26. F. Gürsey and H. C. Tze, Complex and quaternionic analyticity in chiral and gauge theories. I, 
Ann. Physics 128 (1980), 29-130. 

27. H. Haefeli, Hyperkomplexe Differentiale, Comment. Math. Helv. 20 (1947), 382-420. 
28. W. R. Hamilton, Elements of quaternions, Longmans Green, London, 1866; reprinted, 

Chelsea, New York, 1969, Vols. 1, 2. (Also see: The mathematical papers of Sir William Rowan 
Hamilton, Vol. Ill: Algebra (H. Halberstam and R. E. Ingram, eds), Cambridge Univ. Press, 
Cambridge, 1967). 

29. D. Hestenes, Space-time algebra, Gordon and Breach, New York, 1966. 
30. , Multivector functions, J. Math. Anal. Appl. 24 (1968), 467-473. 
31. L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568. 
32. V. Iftimie, Fonctions hypercomplexes, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 9 

(1965), 279-332. 

33. K. Imaeda, A new formulation of classical electrodynamics, Nuovo Cimento B 32 (1976), 
138-162. 

34. M. A. Jafarizadeh, M. Snyder and H. C. Tze, Quaternionic multi-S4 instantons in general 
covariant 5(7(2) Yang-Mills and HP(n) a-models, Nuclear Phys. Bull. 176 (1980), 221. 

35. Y. N. Kafiev, Four dimensional o-models and geometry of Yang-Mills fields, Nuclear Phys. 
Bull. 178 (1981), 177. 

36. V. P. Khavin, Spaces of analytic functions, Plenum Press, New York, 1968, pp. 75-167. 
37. G. Köthe, Die Randverteilungen analytischer Funktionen, Math. Z. 57 (1952), 13-33. 
38. H. Komatsu (Editor), Hyperfunctions and pseudo-differential equations, Lecture Notes in 

Math., vol. 287, Springer-Verlag, Berlin, 1973. 
39. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. 
40. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et 

des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/1956), 271-355. 
41. R. Meise, Representation of distributions and ultradistributions by holomorphic functions, 

Functional Analysis: Surveys and Recent Results (Proc. Paderborn Conf. Functional Analysis), 
North-Holland, Amsterdam, 1977, pp. 189-208. 



240 BOOK REVIEWS 

42. W. Nef, Die Funktionentheorie derpartiellen Differentialgleichungen zweiter Ordnung (Hyper-
komplexe Funktionentheorie), Bull. Soc. Firbourgeoise Sci. Nat. 37 (1944), 348-375. (Also see 
papers on this topic by W. Nef in Comment. Math. Helv., vols. 15,16 and 17.) 

43.1. R. Porteous, Topological geometry, Van Nostrand Reinhold, London, 1969. 
44. M. Riesz, Clifford numbers andspinors, Chaps. I-IV, Inst. Fluid Dynamics and Appl. Math., 

Univ. of Maryland, College Park, Md., 1958. 
45. J. Ryan, Clifford analysis with generalized elliptic and quasi elliptic functions, Applicable Anal. 

13 (1982), 151-171. 
46. , Complexified Clifford analysis, Complex Variables Theory Appl. 1 (1982), 119-149. 
47. M. Sato, Theory of hyperfunctions. I and II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 8 

(1959/1960), 139-193; 387-436. 
48. L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. 
49. B. Simon, The P(<t>)2 Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, 

N. J.. 1974. 
50. F. Sommen, Representation of distributions in R3 by regular functions of a quaternion variable, 

Simon Stevin 53 (1979), 131-150. 
51. , Hypercomplex Fourier and Laplace transforms. I, Illinois J. Math. 26 (1982), 

332-352. 
52. , Some connections between Clifford analysis and complex analysis, Complex Variables 

Theory Appl. 1 (1982), 97-118. 
53. , Hypercomplex Fourier and Laplace transforms. II, Complex Variables Theory Appl. 

1 (1983), 209-238. 
54. V. Soucek, Complex-quaternionic analysis applied to spin-(l/2) massless fields, Complex 

Variables Theory Appl. 1 (1983), 327-346. 
55. R. F. Streater and A. S. Wightman, PCT, spin and statistics, and all that, Benjamin, New 

York, 1964. 
56. A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199-225. 
57. H. G. Tillmann, Randverteilungen analytischer Funktionen und Distributionen, Math. Z. 59 

(1953), 61-83. 
58. , Distributionen als Randverteilungen analytischer Funktionen. II, Math. Z. 76 (1961), 

5-21. 
59. , Darstellung der Schwartzschen Distributionen durch analytische Funktionen, Math. Z. 

77 (1961), 106-124. 
60. , Darstellung vektorwertiger Distributionen durch holomorphe Funktionen, Math. Ann. 

151 (1963), 286-295. 
61. V. S. Vladimirov, Methods of the theory of functions of many complex variables, M. I. T. Press, 

Cambridge, Mass., 1966. 
62. , Generalized functions in mathematical physics, "Mir", Moscow, 1979. 
63. A. I. Zayed, Hardy space theory f or functions with values in a Clifford algebra, 1983 (preprint). 

(See the abstract Boundary behavior of hypercomplex functions with values in a Clifford algebra, 
Abstracts Amer. Math. Soc. 4 (1983), 71.) 

Note: Two new papers in Cuff ord analysis have just appeared in Complex Variables Theory 
Appl. 2 (1983). R. Delanghe is a member of the editorial board of this new journal. 

RICHARD D. CARMICHAEL 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 11, Number 1, My 1984 
©1984 American Mathematical Society 
0273-0979/84 $1.00 + $.25 per page 

Cohomology of groups, by Kenneth S. Brown, Graduate Texts in Mathematics, 
Vol. 87, Springer-Verlag, New York, 1982, x + 306 pp., $28.00. ISBN 
0-3879-0688-6 

The cohomology theory of abstract groups is a tool kit, in much the same 
way as is representation theory. One of its attractions is its breadth: the 


