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THE SPHERICAL BERNSTEIN PROBLEM IN EVEN DIMENSIONS 

BY PER TOMTER 

Introduction. The minimal surface equation is probably the best known 
nonlinear elliptic partial differential equation, and it has been studied exten­
sively. After the settling of the classical Bernstein conjecture through the 
combined efforts of de Giorgi, Almgren, Simons, Bombieri and Giusti (1965-
1969), S. S. Chern, at the International Congress of Mathematicians in Nice, 
1970, proposed the spherical Bernstein problem [3]: 

Let the (n—l)-sphere be imbedded as a minimal hypersurface in the standard 
sphere Sn. Is it necessarily an equator? 

The problem is of clear significance in differential geometry, being closely 
related to the study of minimal cones and the local topological structure of 
isolated singularities in minimal hypersurfaces of riemannian manifolds. 

For n = 3 the answer is positive by a theorem of Almgren and Calabi, 
which holds under the weaker assumption of an immersed S2 . No progress 
was made on the problem until Wu-Yi Hsiang recently proved the existence 
of infinitely many noncongruent minimal imbeddings of S*1"1 into Sn for the 
specific dimensions n = 4,5,6,7,8,10,12,14 [4, 5]. 

It is the purpose of this note to announce the solution of the spherical 
Bernstein problem for all even n. There are notable differences between the 
examples for S 2 m , m > 8, constructed here, and those referred to above. We 
are indebted to Professor Wu-Yi Hsiang for introducing us to his work in 
equivariant differential geometry and for his encouragement. 

Main result. 

THEOREM. Let S2rn be the standard sphere of dimension 2m. Then there 
exists a minimally imbedded (2m—i)-sphere which is different from the equator. 

We believe there exists only one congruence class of such examples which 
are invariant and of cohomogeneity one under the isometry subgroup SO(2) X 
SO(m) on S 2 m , m > 8, described below. The existence of such examples 
is reduced to the existence of certain types of solution curves of a second 
order differential equation in the two-dimensional orbit space of an isometry 
group. In Hsiang's proof it is essential that the singularity of an auxiliary 
two-dimensional dynamical system (which locally approximates the corner 
singularity of the orbit space) is of focal type. For cohomogeneity two isometry 
subgroups of spheres in all other dimensions, however, this singularity is a 
nodal point. It requires a considerable amount of analysis in orbit space to 
deal with that case. 
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The same type of construction gives a S(U(2) xU(ra))-invariant example on 
5 4 m and a Sp(2) x Sp(m)-invariant example on SSm. 

OUTLINE OF THE CONSTRUCTION. The construction is based on the 
orbital geometry of the group G = SO(2) X SO(ra) acting on S 2 m Ç R2™+* = 
R2 <g) Rm © R by the representation p2 ® Pm ® 1. 

1. The orbit space S = S2m/G is a spherical lune, parameterized in 
spherical polar coordinates by (r,0) G [0,7r] X [0,7r/4]. 

2. A curve in X is the projection of a minimal hypersurface in S 2 m iff it 
satisfies the differential equation: 

w 
dr dO sin a 
— = cos a, — = , 
ds ds sin r 
~ = - ( 2 m - l ) ^ cos r + 2 ^ - ^ ( ( m - 2 ) c o t 2 0 - t a n 20), 
ds sm r sin r 

where the curve is parameterized by arc-length s, and a is the angle from 
d/dr to the tangent vector of the curve. 

3. Any curve in X which starts orthogonally to the boundary of X at a 
point (r, 0) = (6,0) and ends orthogonally to the boundary at a point (r, 0) = 
(c,7r/4), b,cE (0,7r), is the projection to X of a smooth hypersphere in S2 m . 

4. Let b G (0,7r). There is a unique solution curve 75(5) = (r(s), 0(s), a(s)) 
of (*) with r(0) = 6, 0(0) = 0 (or TT/4), and d0(O)/ds > 0. For this curve 
a(0) = TT/2. 

5. Let 1(b) be the number of intersection points of 75(5) with solution curve 
0 = 0O = 1 Arctan y/m — 2 before r(s) reaches its first maximum. 

LEMMA 1. There is an e > 0 such that 1(b) < 2 /or 6 € (TT/2 — e, 7r/2). 

LEMMA 2. TTiere is an e > 0 sucft that 1(b) > 4 for be (0,e). 

By studying the variation of 1(b) along the one-parameter family of solution 
curves {75}, it is now easy to conclude from the lemmas that for some value 
of 6, 76 must intersect the boundary 0 = 7r/4 before any self-intersection. This 
is sufficient to establish our main theorem. 

The proof of the lemmas requires rather explicit estimates as well as qualita­
tive arguments. Lemma 2 is particularly delicate. The intersection pattern 
with the solution 0 = 0o is mainly controlled by estimating the auxiliary func­
tion 

a 2m —1 

along the orbit. The limit differential equation satisfied by v when a —• 0, 
0 - • 0O is 

dv 1 2 4 m 2 - 1 o 18m - 1 7 
v H cos r ds sin r 

The intersections take place in the region 

2 A 18m-17 
cos2 r < 2 — — — - . 

4m2 —1 
The proof of the main theorem and further discussion of the spherical 

Bernstein problem will be published elsewhere. 
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