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COMPOSITION AND GENERA OF NORM-TYPE FORMS 

BY WILLIAM C. WATERHOUSE1 

M. Kneser has recently discovered a way to define a composition of binary 
quadratic forms in general [5]. His basic idea can be described as expanding the 
structure to include a specified action of a ring of similitudes. This approach 
avoids the traditional problem of "orienting" the forms, since the "proper 
equivalences" can be defined simply as the isometries that preserve the action 
of the similitude ring. But more is true: when we view his idea in this way, 
we can extend it to norm-type forms of higher degrees. Besides throwing a 
new light on the quadratic case, this extension reveals a natural concept of 
genus underlying the "genus fields" already known in number theory. 

Fix a base ring R (commutative with unit). If P is a free i?-module, then 
a "form" of degree m supported by P is of course a homogeneous polynomial 
ƒ of degree m in the coordinates on P; technically, this means that ƒ is an 
element of the symmetric power Sm(P*), and in this version we can (and do) 
extend the definition to projective P of finite rank. Carrying over the usual 
terminology for quadratic forms, we call (P, ƒ) primitive if ƒ is not identically 
zero modulo any maximal ideal of R. 

Now fix an extension C of R, and assume that C is projective of rank m 
as an i?-module. A form of type C/R will be a pair (P, ƒ) where 

(1) P is an invertible C-module (and hence projective of rank m over R), 
(2) ƒ is a primitive form of degree m on the i?-module P, and 
(3) there is a formal identity f(cp) = N(c)f(p), where N is the norm from 

CtoR. 
Two such forms are equivalent if there is a form isometry preserving the 

C-module structure. Let F(C/R) be the set of equivalence classes. If R —• S is 
any ring homomorphism, then ® H S induces a map F(C/R) —• F(C ® S/S). 
There is always at least one form of type C/R, the trivial form (C, iV), and 
in a sense this is the basic one: 

THEOREM 1. For any form of type C/R there is a faithfully flat R —• S 
such that the form becomes trivial after extension to S. 

This is proved in two steps, first making the C-module free and then making 
the value of ƒ on a generator into an mth power. Several results then follow 
by descent theory (see for instance [7]): 

COROLLARY 1. The classes F(C/R) correspond to the (flat) cohomology 
classes in H\R, Aut(C, N)). 
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COROLLARY 2. There is a natural abelian group structure on F(C/R). 

This second corollary holds because Aut(C/N) consists of multiplications 
by elements in C* of norm 1, an abelian group. This explains why in the 
quadratic case we can only compose "oriented" binary forms: there we have 
H1 of an abelian group, while the ordinary isometry classes are H1 of a larger, 
nonabelian group. Finally, since Aut(C, N) is the kernel of a group scheme 
epimorphism, we automatically get an associated sequence: 

COROLLARY 3. There is an exact sequence 

C*^R* - F(C/R) - Pic(C) -• Pic(R). 

Here Pic(C) -• Pic(jR) is a norm map induced by N: C -+ R applied 
functorially to cocycles. In the quadratic case, this corollary is the ultimate 
result reached by Kneser [5]. 

Let us now specialize back to number theory, with R = Z and C an order 
in a finite extension field L of Q. We say that two forms of type C/Z are 
in the same genus if they are equivalent after extension to each completion 
Zv (including Z» = R). The rings 0<y are semilocal, so by Corollary 3 the 
local equivalence classes are described by Z*/iVC* (which is trivial unless v 
is ramified in C). Using class field theory, we can compute the genera: 

THEOREM 2. The group of genera of forms of type C/Z is the kernel of the 
map 

IIvramified(Z;/./VC;) - G a l ( L 0 / Q ) , 

where La is the largest abelian subextension in L and the map on each Z*/iVC* 
is the norm residue map. 

This theorem can be extended to replace Z by any maximal order. 
For binary integral quadratic forms, Gauss originally defined genera using 

characters, which in essence were tests of local equivalence. But as Hasse 
emphasized [3], these genera also correspond to certain unramified extensions 
of quadratic number fields. Following this idea, Leopoldt [6] defined "genus 
fields" for all abelian L/Q and Fröhlich [1, 2] extended the definition to 
arbitrary finite L/Q. (See also the book by Ishida [4].) The genus field of 
L/Q is defined to be the largest field of the form LLo, where LQ is abelian 
over Q and LLo is unramified over all finite places of L. By class field theory 
then Gal(LLo/L) is a certain quotient of the strict ideal class group. Our 
forms now allow us to connect this idea back with the original idea of local 
equivalence. 

THEOREM 3. Let C be the maximal order in a finite extension L of Q. 
(1) If L has a real place, there is a homomorphism of the strict ideal class 

group onto F(C/Z), and it induces an isomorphism from the Galois group of 
the genus field onto the group of form genera. 

(2) If L is totally complex, the distinction between positive and negative 
definite forms splits F{C/Z) into (Z/2Z) X Pic(C). The genera of positive 
definite forms are mapped isomorphically onto the Galois group of the genus 
field. 
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The most important step in proving this theorem is to derive an idelic 
expression for F(C/Z). Details of all these results will appear elsewhere. 
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