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FUCHS AND THE THEORY OF DIFFERENTIAL EQUATIONS 

BY J. J. GRAY 

Introduction. Lazarus Immanuel Fuchs (1833-1902) was the leading theorist 
of differential equations in the 1860s and 1870s, and, with Frobenius and 
Schwarz, a principal member of the 'second generation' of Berlin mathemati­
cians. He obtained his Habilitation from Berlin University in 1865 and was 
eventually called back to succeed Kummer in 1884. His work can profitably be 
seen as an attempt to impose upon the inchoate world of differential equations 
the conceptual order of the emerging theory of complex functions. As well as 
being the architect of the rigorous modern theory of linear equations, he raised 
many questions which were taken up by his contemporaries and provided an 
interesting battleground for the schools of invariant theory and transformation 
group theory. Most famously his work inspired Poincare to create the theory of 
Fuchsian functions and Fuchsian groups. Through his work and his career we 
can gain an insight into the state of mathematics in the second half of the 
nineteenth century, as the original work of Weierstrass was built up into an 
imposing intellectual edifice. 

Differential equation theory before 1866 and Fuchs9 first contribution. It took 
Fuchs some time to find his true area of interest as a mathematician. His 
doctoral thesis, written under Kummer's supervision, was on lines of curvature 
on a surface. Then he wrote two papers on number theory concerning the 
periods of the «th roots of unity when n is not prime. But Kummer's influence 
was shortly to be outweighed by that of another. Weierstrass had been in 
Berlin as a professor at the Industrial Institute (the Gewerbeschule) since 1856, 
and in July 1864 he became professor at Berlin University. He had by then 
been lecturing at the University for some time. In the summer of 1863 he had 
lectured on Abelian functions and developed his theory of linear differential 
equations. This caught Fuchs' interest, and he then began to study the subject 
that occupied him for the rest of his life. His relationship with Weierstrass 
seems to have been close, and by 1870 he was writing to Casorati that he 
considered himself a pupil of Weierstrass (quoted in Neuenschwander [1978b, 
p. 46]). 

Differential equations had been studied from various points of view by the 
1860s, and we may distinguish two strands. One deals with particular equa­
tions, such as Legendre's equation (defined below) and its generalizations to 
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2 J. J. GRAY 

the hypergeometric equation and the differential equations underlying contem­
porary work on AbeHan functions. The other sought to supply general ex­
istence proofs valid for large classes of differential equations. Legendre's 
equation (the name is due to Fuchs) 

*< l -*a )0+( l -3**)£-* = O 
had been studied both by Legendre himself [1825] and Kummer [1836] because 
it describes the periods 

K = fl dx K, _ r\ dx 
J° [(1 - X2)(\ - k2X2)]V2 ' •'O [(1 - x 2 ) ( l _ k>2x2)y/2 

of the complete elliptic integrals as functions of the modulus k (where 
ka + k'2 = 1). Kummer recognized Legendre's equation as reducible to the 
hypergeometric equation 

*0 - *)0+[Y-(« +/*+!)*]£-"^ = 0, 
introduced and carefully studied by Gauss in his [1812a]. In fact, Kummer's 
study in some ways coincided with the then unpublished half of Gauss' paper 
[1812b]. The most important advances beyond Kummer's work were made by 
Riemann and Weierstrass in the 1850s. Riemann gave a thorough account of 
the hypergeometric equation from the standpoint of complex analysis in his 
paper [1857a] in which he introduced his P-functions. These are functions with 
three branch points on the complex sphere at which their branching behaviour 
is prescribed, and any three satisfy a linear relationship with constant coeffi­
cients. Riemann showed that from this information alone it is possible to 
deduce that the P-functions (with prescribed behaviour at the branch points) 
satisfy a hypergeometric equation whose coefficients can be determined. This 
accomplished two things: it showed that for this kind of equation the solutions 
determine the equation; and it clarified the nature of the solutions as functions 
of a complex variable. In particular, it clarified how they behave under analytic 
continuation, a matter on which Gauss had held perceptive views (not pub­
lished until 1866), but which Kummer had avoided by confining his attention 
to equations with a real variable. Then, in an even more famous paper of 1857 
[1857b] on the theory of AbeHan functions, Riemann developed his theory of 
algebraic functions and their integrals. When he came to deal with Abel's 
theorem in §§14-16 of that paper, he discussed when a function can exist with 
prescribed zeros and poles by means of a system of linear differential equa­
tions. The same approach had been taken the year earHer by Weierstrass [1856] 
when deaHng with the simpler case of hyperelHptic integrals, as Riemann 
acknowledged. 

To understand Weierstrass' argument we may take the simpler case of 
elliptic integrals which he used as an iUustration. The function x = snt/, a 
Jacobian elHptic function, satisfies 

d2logx = klxl _ \_ 

du2 x2 ' 



FUCHS AND THE THEORY OF DIFFERENTIAL EQUATIONS 3 

Setting x = px/p eventually yields two equations, 

d2logPl = -p2 d2logp = -k2p\ 

du2 p\ ' du2 p2 ' 

which, conversely, can be solved in terms of power series in u which are 
uniformly convergent for all u. The arbitrary constants can be determined so 
that at u = 0, 

when indeed snw = px/p. For the general theory Weierstrass had to consider n 
linear ordinary differential equations in n variables, corresponding to Jacobi's 
insight that one must invert sums of n integrals each taken along n paths. It is 
apparent that Weierstrass based his theory on differential equations and 
showed explicitly how the existence of solutions to such equations could be 
obtained as power series uniformly convergent on some domain. Unhappily, 
his lectures of 1863, which decisively influenced Fuchs, seem to be lost, but we 
do have a paper Weierstrass wrote in the 1840s (not published until 1894). In 
[1842] he studied the system of equations 

dxt x 

— = Gi{xl9...9xn)9 \<i<n, 

where the Gt are rational functions, and showed how the Gt can be modified so 
that a majorizing argument can be used to establish the uniform convergence 
of the power series which formally satisfy the original system of equations. 

Weierstrass has led us to the question of general existence theorems for 
solutions to ordinary differential equations. The pioneer in these matters, as is 
well known, is Cauchy, chiefly in his [1835] in which he presented the method 
of majorants, but also in his [1840], which was less well known. In the 1850s 
the new generation of French mathematicians began to investigate the singular­
ities of analytic functions; the crucial paper was the joint work of Briot and 
Bouquet [1856a] who were pupils of Liouville. They studied the equation 
dy/dz — f(y, z) at points where the algebraic function/is undetermined and 
showed that at such points the solutions may have branch points and poles, 
even essential singularities. As Neuenschwander has shown [1978a], Briot and 
Bouquet were unclear about the nature of essential singularities. In [1856b] 
they made a thorough study of those equations of the form F(w, du/dz) = 0, 
where F is polynomial, which have elliptic functions as their solutions. 

Fuchs based his first work on differential equations on the lectures of 
Weierstrass, Riemann's study of the hypergeometric equation, and the second 
study [1856b] of Briot and Bouquet. He pubHshed his findings in the 
Jahrsbericht of the Berlin Industry Institute [1865], and in a slightly revised 
form in Crelle's Journal [1866]. He argued that the main task was to find the 
properties of the solution to a differential equation at all points of the plane, in 
particular, whether the function is discontinuous or many-valued. By 'discon­
tinuous' he meant what we mean by 'has a pole'. 
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He considered the nth order linear ordinary differential equation 

^ A \
 dny d"~ly • _L 

V f fan ^ fan-X fnS 

whose coefficients pt are single-valued analytic functions everywhere on the 
complex sphere and have only finitely many poles, in short, are rational 
functions. He showed by a majorizing argument that away from the poles of 
the coefficients the equation has a basis of n linearly independent solutions 
which can be specified by choosing the values of y, dy/dx,... 9d

n~ly/dxn~l at 
a nonsingular point. This observation was hardly new, and the route to the 
general form of the solutions was in any case soon considerably simplified by 
Frobenius [1873a]. But it implies, as Fuchs pointed out, that the singular points 
of the solutions must He amongst the singular points of the coefficients, and so, 
in particular, they are fixed. Next he asked what restriction is to be placed on 
the coefficients if the solutions are not to have any 'bad' singularities, i.e., only 
finite poles and logarithmic branch points. He obtained a complete answer to 
this question, and here his results were new. (See Neuenschwander [1981] for a 
general discussion of the contemporary methods of complex function theory.) 

The methods Fuchs employed derived from those of Riemann. He observed 
that if y = (yu...9yn) is an rc-tuple of independent solutions valid in a 
neighbourhood of a singular point a of the equation, then analytic continua­
tion of y around a returns it as another n-tuple of solutions, say y = (yu... 9yn)9 

and y = Ry9 where R is an n X n matrix of constants. Replacing y by a 
different basis of solutions changes R to a matrix of the form BRB~\ In 
particular, taking y round every singular point in turn in the same direction 
takes y along a contractible path on the sphere with the singular points 
removed, so Fuchs obtained an equation of the form 

R\B2R2B2l - - • Bp+\Rp+iB^+i = I, 

whence det(RlR2 - • • Rp+l) = 1. Thus far, Fuchs had essentially followed 
Riemann, even to the extent of reproducing his notation. Now he went beyond. 
The eigenvalues of each Rt are all that matter (Fuchs called them the roots of 
the fundamental determining equation). If wx is an eigenvalue corresponding to 
the solution y! then yx = wxyx, and >>! is of the formyx = x r ,2f m anxn

9 where 
wx = elmir\ If Rt can be completely diagonalized, say because its eigenvalues 
wn,...,w in are all distinct, then the solutions are free of logarithmic terms and 
the corresponding rtj never coincide or differ by an integer. If, however, Rt 

cannot be diagonalized, then logarithmic terms are to be expected. Fuchs' 
analysis fell just short of introducing the Jordan canonical form of a matrix, 
which was done by Jordan in [1870] and subsequently applied to differential 
equation theory by Hamburger [1873]. It preceded Weierstrass' study of 
canonical divisors [1868], which it may have influenced. (For a discussion of 
Weierstrass' work, see Hawkins [1977].) Fuchs also wrote down an equation for 
finding the rtj directly, which he called the fundamental equation, and which 
Cayley [1883] later successfully christened the indicial equation. But of greater 
significance was Fuchs' complicated passage from the matrices Rt to a global 
study of the solutions, which culminated in his theorem that the linear ordinary 
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differential equation (A) has all its solutions free of 'bad' singularities if and 
only if it is of the form 

dny = 5 - i dn~xy ^ ^2(p-i) dn~2y Fn(p_l)y 

dxn * dxn~l rp2 dxn~2 V ' 

where \p — (x — ax)(x — a2) — • (x — a ) , and Fk is a polynomial in x of 
degree at most k. The equation has p + 1 singular points: al9 a2,...9ap9 and 
ap+l = oo. Moreover, there is one constraint to be satisfied by the indices rtj: 

/=1 j=\ L 

This derives from stipulated behaviour of the solutions. 
As an example of his theory, Fuchs observed that the second-order equation 

of this type with two finite singular points (p = 2) is necessarily the hypergeo-
metric equation. For such an equation, Fp_x involves 2 free constants and 
F2(p_1) involves 3, so there are 5 free constants and 5 free indices rtj. This 
enabled Fuchs to explain Riemann's result that the solutions determined the 
equation. For all other equations of order greater than 1 there are more 
constants available in the coefficients F than in the set of indices {//y}, so the 
equation is not uniquely determined by the solutions. The extra coefficients 
have since become notorious as accessory parameters. 

In conclusion, Fuchs asked what further restriction would have to be 
imposed on the coefficients before the solutions were all algebraic. This 
question was to attract a considerable amount of interest in the next decade, 
but at this stage Fuchs could only observe that the exponents at the singular 
points must be rational. All in all, the paper was a considerable achievement. It 
earned Fuchs his Habituation, and Weierstrass said it showed that Fuchs "is 
completely familiar with the principles of the new function theory and is 
capable of independent research in the domain of analysis" (quoted in Bier-
mann [1973, p. 94]). 

Problems arising: notably, when are the solutions algebraic? Fuchs' work 
raised several questions for his colleagues to deal with. There was the question 
of what could usefully be said about equations which did not satisfy Fuchs' 
conditions, or were not, as came to be said, of the Fuchsian type. The pioneer 
in this area was L. W. Thome who came to Berlin in 1863 and published a 
series of increasingly lengthy papers on the matter during the 1870s. Since 
most of the named equations of mathematical physics (including Mathieu's, 
Bessel's, and Stokes') are not Fuchsian, and nor, for that matter, are the 
equations with constant coefficients of the Fuchsian type, the question is not 
an artificial one. Thome made some progress, and his work was further 
simplified by Frobenius [1875], who had also contributed the idea of irreduci-
bility of a differential equation [1873b]. He called an equation irreducible if it 
had no solutions in common with an equation of lower order, or of the same 
order but lower degree, and he showed that the hypergeometric equation is 
reducible if and only if one of its solutions is a polynomial. When Frobenius 
considered Thome's work (Frobenius [1875]), he took up the case raised by 
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Thome [1872] when only one of the solutions in a basis has an essential 
singularity, and showed that in this case the indicial equation at a singular 
point is of order n — \ and the adjoint differential equation 

has a solution of the form 

00 

Qxp(cmx~m + • • • +cx~l)*2arx
p+r. 

r 

However, Thome's work did not shed much light on the nature of equations 
not of the Fuchsian type. One problem, that of exhibiting their solutions, is 
quite tricky, for the method of undetermined coefficients easily produces series 
with zero radius of convergence. Eventually, Poincare [1886] had the brilliant 
idea of interpreting these series as asymptotic solutions. This story is well told 
in Schlissel [1976] and will not be pursued further here. 

A second question is what to make of the accessory parameters. By and 
large, despite some remarks by J. Thomae [1870] and Heun [1889], this 
problem proved too difficult. The best path forward was to consider equations 
which arise in specific ways that enable one to do something with them, and 
this was the path Fuchs himself took. 

It was observed earlier that the periods of an elliptic integral, when consid­
ered as functions of the modulus, satisfy Legendre's equation. In [1870a] Fuchs 
looked at the periods of hyperelliptic integrals, considered as functions of a 
parameter. The paper is the most Riemannian of all his works, and in it he 
succeeded in showing that the periods satisfy an equation which is of the 
Fuchsian type. He was also able to recognize equations of this type amongst 
the equations satisfied by Abelian integrals [1871b] and by the theta null-val­
ues 0(0,...,0) as functions of the moduli [1871a]. Here he simplified some 
results of Thomae by basing his approach to the theta-functions on that of 
Clebsch and Gordan, in their Theorie der AbeVsche Functionen [1866]. These 
papers are interesting because they show a rising BerHn-school mathematician 
responding to Riemann's legacy, but it can hardly be argued that Fuchs did 
much to advance mathematics in them. He seems to have recognized this, for 
he soon abandoned the topic. He then wrote some papers seeking to simplify 
the study of the analytic continuation of multivalued functions before he 
returned to the problem he had raised in 1866: when are all the solutions to a 
differential equation algebraic? 

He was recalled to the problem by a striking paper of Schwarz [1872], in 
which it was solved for the hypergeometric equation. Schwarz reduced the 
problem to the study of when the quotient of two independent solutions to a 
hypergeometric equation is algebraic. If the hypergeometric equation is 
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and two independent solutions are/and g, then the quotient f/g = ij satisfies 

(^(TJ, x) is nowadays called the Schwarzian derivative, but it has a long 
history, and had been used by Kummer in his [1834], as Schwarz well knew.) 
Schwarz' first insight was to prove that this function maps the upper half-plane 
onto a circular-arc triangle whose angles XTT, /ATT, and VTT depend in a simple 
way on a, /?, and y, the coefficients in p and q. Then, under analytic 
continuation, it must map the lower half-plane onto a second, congruent, 
circular-arc triangle. When continued back into the upper half-plane, another 
triangle is produced, and so on. So if TJ is to be algebraic, this process must 
cover the sphere with a finite number of these triangles. This is a strong 
restriction on a, /?, and y, and Schwarz showed that the corresponding 
coverings of the sphere were the dihedrons, where the faces have angles TT/W, 
7T/2, 7T/2, and certain triangular subdivisions corresponding to the regular 
solids. Apart from the dihedral family, he found precisely 14 cases in which all 
the solutions to the hypergeometric equation were algebraic. 

Schwarz then went on to investigate when the triangles produced a Euclidean 
tessellation of the plane; in this case TJ is the inverse of an elliptic function, as 
he observed. Then, very significantly, he considered the case when the angle 
sum of each triangle is less than TT, and he showed with the example of a 
triangle whose angles were TT/3, TT/3, TT/5, that in this case the triangles could 
fill out a finite disc. It then happens that the inverse function to TJ is a 
single-valued function on the interior of the disc which has the boundary of the 
disc as a natural boundary, a phenomenon noticed earlier by Weierstrass in 
1863. He gave this example of such a function, which he attributed to 
Kronecker: 

= 1 + 2q + 2q4 + 2q9 + • • • . 

No one responded for a while to the fertile new area that Schwarz discovered 
here, but his solution to the question of when the hypergeometric equation has 
algebraic solutions stimulated Fuchs to look again at his old problem. This 
time he formulated it in the language of invariant theory, which was a central 
topic of contemporary mathemetics. A homogeneous polynomial f(xl9... ,xn) 
in n variables is called a form in this language. Expressions in the coefficients 
which do not alter under linear transformations of the variables are called 
absolute invariants; expressions which only alter by some power of the 
determinant of the transformation are called relative invariants. Analogous 
expressions which involve the variables are called covariants. For example, the 
Hessian det(82f/dxfixj) is a covariant, and if gl and g2 are forms in 2 
variables (i.e. binary forms) then their Jacobian det(9g,/9x7) is a simultaneous 
covariant. The whole thrust of invariant theory, especially as Gordan was then 
developing it, was the production of invariants and covariants of a given form. 
Gordan's main theorem [1868] was that there is a finite basis for the ring of all 
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covariants of a binary form, although his proof was not very explicit. The 
theory of even ternary forms was still in a very primitive state. 

Fuchs developed his analysis as follows [1876a]. He considered a basis of 
solutions only to a second-order differential equation, so that he could use the 
relatively well-developed theory of binary forms. Given such an equation, 
which can be written as 

(B) ^T + & = °> 
dzl 

he took binary forms f(yx, y2) in the solutions yx and y2, solutions which he 
supposed were algebraic functions with nonconstant quotient. In this case, 
every solution is algebraic. He then looked for binary forms of a particular 
kind, which he called ground forms. These were products 

(axyx + a2y2) • • • (anXyx + an2y2) 

which transformed under analytic continuation of z only by being multipHed 
by a root of unity. Accordingly they are roots of rational functions. He showed 
that they exist and can be so obtained that n is as small as possible, say N. 
They are characterized invariant-theoretically as the binary forms all of whose 
covariants of lower degree vanish, but Fuchs confessed in a letter to Hermite 
[1876b] that he was unable to solve the problem in this generality. Instead he 
approached it in an ad hoc way using a mixture of elementary invariant theory 
and the monodromy of the differential equation. Eventually he obtained a 
finite list of values for N and the associated ground forms $(yx, y2\ which 
culminated with these cases. 

N $ 
4 a0yf + a3 yx y\y 

6 axy\y2 + a^y\y\ + a5yxy2
5 or 

*\y\yi + a^y\yh 
8 axy

7
xy2 + a4yx

4y2
4 + anyxy\ (two cases), 

10 axy\y2 + a5y
5
xy2

5 + a9yxy2\ 

12 axy\xy2 + a6yx
6y^ + axxyxy2

n (two cases). 

Fuchs summarized his findings in two theorems. If the differential equation 
(B) has algebraic solutions, then either the general solution or the correspond­
ing O is a root of a rational function, and, conversely, if a basis of solutions 
{yX9 y2} yields a form ®(yx, y2) which is not of degree a power of 2, then the 
differential equation has algebraic solutions. Recognizing that this is scarcely a 
simple test, he looked for simpler necessary conditions and found that unless 
JV = 2 it was necessary that no exponent at a singular point should have 
denominator greater than 10. This condition, he observed, is indeed met by the 
exponents of those hypergeometric equations Schwarz had shown had only 
algebraic solutions. 

Fuchs' work drew an immediate response from Felix Klein. While still at 
Erlangen in 1875, Klein had been told of Schwarz' work by Gordan, and 



FUCHS AND THE THEORY OF DIFFERENTIAL EQUATIONS 9 

studying it had greatly deepened his grasp of the mathematics of the 
icosahedron. On reading Fuchs' paper he saw at once that it contained 
superfluous cases, namely those $ which do not describe the vertex net of a 
regular solid, and he commented to this effect in his Fortschritte review [1877, 
vol. IX, 172-173]. Klein's approach to the question of algebraic solutions was 
in fact much closer to that of Schwarz than Fuchs, as he was later to point out 
at length to Poincare when Fuchs' name became attached to Fuchsian groups. 

Klein first gave a geometric proof [1875/76] that there are only finitely 
many finite groups of motions of the sphere, excluding the cyclic and dihedral 
families. Armed with this information he could then write down the form / 
which specifies the vertex net of each regular solid, its Hessian H(f) which 
locates the centres of the faces, and the Jacobian T of f and H(f) which 
locates the mid-edge points. There is a relationship between/, H(f\ and T, as 
he showed, but which we shall not need. Then, in his [1876], he described the 
implications of the work for the problems of algebraic solutions. If a differen­
tial equation has algebraic solutions then its monodromy group G is finite and 
therefore a known one of the list of possibilities. There is a canonical 
G-invariant rational function Z = Z(z) associated to G which is such that its 
inverse function z = z(Z) satisfies the canonical Schwarzian equation in 
Schwarz' Ust:^(ry, Z) = R(Z). If y is a quotient of two solutions of the given 
differential equation, then its inverse function f = f(y) is also G-invariant and 
rational, so f and Z are rational functions of each other, so if z = <l>(y) 
converts Z = Z(z) into Z(<j>(y)) = f(j>), it converts the canonical equation 
into the given one, and the inverse transformation has the opposite effect. This 
elegant argument reduces the problem for the general second-order differential 
equation to the hypergeometric case. However, it is almost useless for solving 
the problem: characterize those second-order equations having only algebraic 
solutions. It deals rather better with the problem of determining whether or not 
a given equation has only algebraic solutions, a problem which has recently 
been rediscussed by Baldassarri and Dwork [1979]. 

Klein's solution certainly represented a victory for the new methods of group 
theory over the older ones of invariant theory, but the success was only partial 
because Klein emphasized the underlying geometry, as was his wont. But 
simultaneously, his friend Jordan gave an entirely group-theoretic solution 
which he was also able to extend to the third-order equation, and in some sense 
to the «th order. This was a dramatic illustration of the power of group theory. 

The central insight recognized by Klein and Jordan was that a differential 
equation has only algebraic solutions if and only if its monodromy group is 
finite. Consideration of the Wronskian of two independent solutions of 
d2y/dz2 + py = 0 shows that the monodromy group of this equation is a 
subgroup of PSL(2; C). Jordan classified these purely group-theoretically in 
[1876], using the newly available tools of Sylow theory. At first he made a 
trivial numerical mistake and lost the icosahedral group, but a letter from 
Klein put him right. Jordan dealt with the third-order case in the same way in 
the final section of the long paper he wrote for Klein's Mathematische Annalen 
[1878]. He had many more cases to consider by Sylow theory before the 
analogues of the groups of the regular solids were found in PSL(3; C) and 
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again he missed one, known most usually today as PSL(2; Z/7Z); see Gray 
[1982] for the story of Klein's discovery of it. Both men missed Valentiner's 
[1889] presentation of A6 as a subgroup of PSL(3; C). 

The wth-order case led Jordan to one of his most famous theorems, the 
finiteness theorem, which asserts that in some sense PSL(w; C) has only finitely 
many finite subgroups (see Jordan [1880]). The precise sense is not relevant to 
this discussion; but the case n = 2 makes it clear that a preliminary classifica­
tion into types of subgroups is needed since there are two infinite families of 
subgroups, the cyclic and dihedral ones. Then when n = 3 one must take note 
of trivial cases of direct sums such as octahedral plus cyclic, and so on. 

Jordan also considered what the related differential equations and their 
solutions would look like and proposed that only finitely many equations 
correspond to a given group, but Poincare [1884] later pointed out that this is 
incorrect because of the nature of the accessory parameters. 

The study of third-order differential equations, all of whose solutions are 
algebraic, is necessarily more complicated, as Jordan's work had shown, and 
progress was much slower. In two papers [1882a, b] Fuchs showed that if the 
set of functions {yl9 y2, y3) is a basis of solutions to a third-order equation 
and there is a homogeneous polynomial identity of order n > 2,/(yx, y29 y3) = 
0, then the equation only has algebraic solutions. When n = 2 the equation is 
satisfied by the squares of the solutions of a certain second-order equation; this 
class of third-order equations had earlier been studied by Brioschi [1879]. 
Fuchs also investigated the connection between the solutions of the differential 
equation and the genus/? of the Riemann surface defined hy f(yl9 y29 y3) = 0. 
Halphen's essay of 1881 published as [1884] extended this analysis to the 
«th-order case. In awarding it the Grand Prix of the Academie des Sciences, 
Hermite said that it introduced the algebraic notion of invariants into the 
integral Calculus, and that the idea of the genus of an algebraic equation 
("introduced into Analysis by Riemann and used so often in the works of our 
time") played an equally essential role in it. 

By a happy coincidence, the essay that took second place was Poincare's first 
significant work on Fuchsian functions. Whereas Halphen's approach is a high 
water mark for the methods of invariant theory, the work of Jordan and 
Poincare helped open up a fertile area for the newer methods of group theory, 
and so displayed these methods to advantage in the study of problems in a 
central topic in contemporary mathematics. Poincafe's essay derived from 
another new departure by Fuchs, to whom we must now return, although not 
immediately to the work that inspired Poincare. 

Elliptic and modular functions; the arrival of Poincare. In a geometrical sense, 
the ordinary differential equations which he immediately beyond the equations 
with rational functions as coefficients are those with elliptic functions as 
coefficients. Of these, the simplest and most historically and physically signifi­
cant is Lame's equation. It can be written variously as 

^-(n(n+l)p(u)+B)y = 0, 
du 
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using the Weierstrassian elliptic function p(u), or as 

d2y 1 

dx2 2 x — ex x — e2 x — e3 

(n(n+l)+B)y 

dy_ 
dx 

n 
4(x- el)(x-e2)(x- e3) 

which exhibits it as an equation of the Fuchsian type with four singular points. 
As such, it is the simplest example of Heun's equation, in which the accessory 
parameter is an integer n. It may also be written in terms of the Jacobian 
elliptic function sn v. Lame introduced it in the first form in his [1845], and 
Halphen studied it in the second form by writing x = jp(u) in his [1888]. In the 
third form it was studied by Hermite [1877] and Fuchs [1878a]. 

In a series of papers written between 1877 and 1882, Hermite showed that 
the solutions to Lame's equation were what Picard was soon to call elliptic 
functions of the second kind. These are functions F for which there are two 
quasi-periods, IK and 2iK': 

F(x + 2K) = iiF(x), F(x + 2iK') = /iT(x), 

for some constants /A and /i'. Hermite's work begins a considerable flurry of 
activity aimed at showing how elliptic functions of both the old and new kinds 
could be used in applied mathematics. 

Fuchs showed first of all, in his [1877c] and [1878a], how Hermite's work 
related to his own, and then in his [1878c] he asked what conditions must be 
imposed on P if the differential equation d2y/dx2 = Py has a basis of 
solutions consisting of two elliptic functions of the second kind whose poles 
are the poles of P. He showed that it was necessary that P be a single-valued 
doubly-periodic function of x. Picard then showed in his [1879, 1880a, b] that 
this condition is in general sufficient; the anomalous cases were treated by 
Mittag-Leffler [1880]. The consummation of this line of enquiry was Halphen's 
prize-winning essay of 1881 already mentioned. 

By now Fuchs had moved on to a more general question, which is the one 
that caught Poincare's interest. Fuchs took the general second-order differen­
tial equation of the Fuchsian type, 

P and Q are rational functions, and supposed fx and f2 were linearly indepen­
dent solutions of it. He then asked the following question, which is a naive 
generalization of the Jacobi inversion problem. Consider 

/ 7i(*) dz+f 2f\(z) dz = ux(zl9 z2), 

J f2(z)dz+j f2(z)dz = u2(zl,z2), 
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and ask: what can be said about zx and z2 as functions of ux and u2l He 
sometimes imposed an auxiliary condition which required the inverse function 
z = z(f) to be single-valued if f = fi(z)/f2(z). 

It cannot be said that the eight papers Fuchs wrote on this subject were a 
great success. Poincare, indeed, took as his starting point for his prize essay the 
observation that Fuchs' case-by-case analysis was both confusing and incom­
plete. It certainly confused Fuchs, because some of his results contradicted 
ones he had earlier obtained in his study of the problem of when a differential 
equation has all its solutions algebraic. In the correspondence of 1880 between 
Poincare and Fuchs (published in, e.g., Poincare, Oeuvres, XI, pp. 13-25) 
Poincare even had to explain how to distinguish between single-valued and 
unbranched functions. The nub of the problem can be indicated by considering 
what for Fuchs was just the auxiliary condition that z = z(£) be single-valued, 
but which Poincarfc rightly emphasized was the central problem. Suppose, for 
simplicity, the differential equation has three singular points and so is the 
hypergeometric equation. Then, if y is a loop based at z0 and enclosing a 
singular point, analytic continuation of fx and/2 around y returns them as, say, 
a\f\ + aih ^ d ^1/1 + ^2/2* respectively. The variable z has returned to z0, so 
the quotient fx/f2 satisfies 

f\(zo) =
 aifi(zo) + a2fi(zo) 

fi(zo) bxfx{z0) + b2f2(z0) ' 

Consequently, the inverse function is invariant: 

The function fx/f2 is holomorphic everywhere except at the three singular 
points of the differential equation, which may be put at z = 0, 1 and 00 if need 
be by a rational change of variable. So fx/f2 maps the upper half-plane onto a 
circular-arc triangle and, under analytic continuation maps the Riemann 
sphere onto a net of triangles, as Schwarz had shown. The inverse function will 
therefore be single valued provided that the net of triangles does not overlap. 
Fuchs' work produced conditions sufficient to guarantee that his functions 
zx — zx(ul9 u2) and z2 — z2(ux, u2) were holomorphic, but Poincare pointed 
out that this only showed that z = z(fx/f2) was not branched, not that the 
function was single valued. It left open the possibility that the net of triangles 
filled out, for example, an annular region. Eventually Fuchs pushed his results 
to a complete solution, given in his [1887d]. An amusing conclusion of his is 
that the original differential equation cannot have more than 6 finite singular 
points. 

It seems that Fuchs' lack of geometrical grasp may have let him down. In an 
earlier paper [1877b] he dealt with this question of Hermite: why is it that if K 
and K' are complete elliptic integrals, and so solutions of Legendre's equation, 
and one defines H = K/K', q = e~"H

9 then this, as a function of q, has the 
unit circle as a natural boundary, but the same is not true if K and K' are 
replaced by / and J\ Legendre's complete elliptic integrals of the second kind. 
Fuchs had answered this question by comparing the monodromy matrices in 
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each case. When K and K' are considered, the monodromy matrices are of the 
form 

a 2bi\ 
lei d ) 

where a, b, c, and d are integers. So under arbitrary analytic continuation the 
general form of H is known, and from it Fuchs could deduce the behaviour of 
q. He showed that the inverse function takes the values 0,1 and oo on the circle 
| q |= 1 (although he got their distribution wrong as Dedekind speedily showed 
in his [1877]). Then he showed that the corresponding story for / and / ' , 
starting from the differential equation which they satisfy, is suitably different. 

Hermite was very pleased with the result, which enabled him to avoid using 
Riemann's methods. In fact the question is a deep one. Fuchs had shown what 
seems to have been known to Gauss by 1805 (see Gauss, Werke, III, p. 477) 
and Riemann (see his Werke, 2nd edition, 1892, p. 455 for Dedekind's analysis 
of a Riemannian fragment), namely that k2 = k2(K/K')9 the elliptic modular 
function, is invariant under transformations z -> (az + 2bi)/(2ciz + d). Al­
lowing for a rotation of the complex plane by IT, which amounts to replacing K 
by iK, this is saying that A:2 is invariant under the subgroup of SL(2: Z) which 
is the kernel of the map of matrices induced from the mapping Z -> Z/2Z. 
Fuchs did not express his result this way, preferring his monodromy matrices 
and the quotient K/K', but Hermite in his reply stressed the invariance of the 
inverse function. Unlike Gauss and Riemann, neither drew a picture of the 
fundamental domain for k2 (Fuchs did so in a much later paper [1893], by 
which time the material was quite generally known). The first to stress the 
group-theoretical aspect seems to have been Klein in his [1878/79] (see Gray 
[1982]). 

It seems worth mentioning that Fuchs' attack on the problem was to replace 
the parameter A:2 in the complete elliptic integrals K and K' by X"1. This 
quadratic transformation k2 — A, as it is called, reduces Legendre's equation to 
the hypergeometric equation satisfied by Ky/X and A''A, where K and K' are 
now regarded as functions of X. This equation, 

»<*-'>£ + *x-i)£ + I,-o. 
has since become known as the Picard-Fuchs equation. It has a modern 
significance in algebraic geometry which is beautifully explained in Clemens 
[1980]. 

At all events, Fuchs did indeed answer his original question. I have at­
tempted a detailed exposition of his work in my [1983b] and will not repeat the 
attempt here. The vital response was Poincare's. Poincare, as has been said, 
considered only the question about the inverse to the quotient of two solutions 
to a differential equation. We have two accounts of his progress. One is his 
celebrated essay [1908] in which he emphasized the psychological aspects of his 
discoveries. The other comprises the three unpublished Supplements to his 
essay, recently discovered and described in Gray [1981,1983a]. Taken together 
they show almost week by week how the hypergeometric equation was studied 
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by Poincare until the realization came (boarding a bus at Coutances) that when 
the triangles fill out a disc analytic continuation moves them around by 
non-Euclidean rigid-body motions. This realization dominates the first supple­
ment, and it enabled him to prove the convergence of certain holomorphic 
quasi-invariant functions, which he called theta-Fuchsians, whose quotients 
represented the inverse function z — z(fx/f2). A second unexpected ap­
pearance of non-Euclidean geometry when he was pondering the number 
theory of a2 + b2 — c2 enabled Poincare to escape the hypergeometric case 
and turn to the general second-order equation, as the second supplement 
describes. An unrigorous continuity method then enabled him in the third 
supplement to deal with Legendre's equation, when the circular-arc triangles 
have zero angles. 

These papers are the start of Poincare's Fuchsian and Kleinian theories (see 
his [1882a, b, 1884, etc.]). It is well known that Klein hotly contested the 
appropriateness of calling them after Fuchs, and indeed Poincare admitted (27 
June 1881) that had he known of Schwarz' work he would have called them 
after Schwarz instead. But something in Klein's ferocity must have annoyed 
Poincare, because he christened related objects Kleinian and observed in 
German that "Name is Sound and Fury" (4 April 1882). The letters between 
the two men make fascinating reading and have often been reprinted, for 
example in Klein's Gesammelte Mathematische Abhandlungen, III, 1923, pp. 
587-621, and in Poincare's Oeuvres, XI, 1953, pp. 26-65. The controversy 
became public in December 1881 when Klein added editorial comments to the 
paper he had commissioned from Poincare for the Mathematische Annalen, 
and Fuchs replied with a carefully written note in the Gottingen Nachrichten 
[1882a]. However the question of influence may be resolved, it is not exactly 
true that Klein began his work on functions "which remain unchanged under 
linear substitutions" as a result of Fuchs' work, which was Fuchs' final claim. 
As we have seen, Klein was already interested in such a question when Fuchs 
returned to the algebraic solutions question. 

Fuchs' work in the 1880s. The year 1884 marks in some ways the last high 
point of Fuchs' career. He received the final accolade of a full professorship at 
the University of Berlin and was made a full member of the Berlin Academy of 
Sciences. He also solved a question suggested by his earliest work on differen­
tial equations: characterize those (nonlinear) equations which have only fixed 
branched points none of which depend on the initial conditions. He considered 
in his [1884a] only first-order differential equations F(x9 y9 y') = 0, where F is 
a polynomial in y and yf whose coefficients are single-valued functions of z, 
and showed by relatively elementary considerations that the necessary and 
sufficient conditions for the equation 

F(z9 y9 /) = a0y'm + axy'm~x + • • • +am = 0 

to have only fixed branch points, where the a's are polynomials in y whose 
coefficients are rational functions of z, were: 

1. a0 is independent of j , and ak is of degree at most 2k in y; 
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2. if y = 77 is a root of the discriminant D(z, y) — 0 of F, for which y' is 
branched as a function of }>, then TJ also satisfies the differential equation, and 
the values of y' lying over >> = TJ are all>>' = di\/dz\ 

3. if the root 77' = dt\/dz is of multiplicity a then TJ is a root of F(z, y, y') — 0 
of multiphcity at least a — 1. 

[The discriminant is obtained by eliminating y' from F(z, y9 y') = 0 and 
dF/dy' = 0; it picks out multiple points on the curve F — 0.] 

Condition (1) derives from stipulating that dy/dz be finite when z — 00. 
This is readily seen in the case of first degree equations: 

a0(y)y' + al(y) = 0. 

If one sets j> = 1/y, then the equation becomes 

To avoid the situation where an arbitrary choice of (z, y) = (a,0) makes 
dy/dz infinite, it is necessary that y2ax(y) be finite when y = 0. So ax must be 
of degree at most 2 in y, and ax, consequently of degree at most — 2 in y. This 
shows that the most general first-order and first degree equation with only 
fixed branch points is 

% = *„(*) + sMy + %&)y\ 
the famous Riccati equation. For equations of higher degree the corresponding 
result is obtained by using suitably chosen local coordinates. 

Fuchs then enquired about the special cases which arise when the genus of 
the curve relating y and y' is 0 or 1, cases which arise, he showed, when the 
factors of the discriminant D(y) = 0, which give the branch points of y' at 
y = ry, are independent of z. He showed that when p = 0 the equation is 
rationally transformable to Riccati's equation; the case p = 1 was shown to 
reduce to 

^ = A0 + Axt + A2t
2 + M J R ) , 

where Al9 A2, A3 and X are functions of z alone, and R is a polynomial of 
degree 4. This result followed almost at once from Clebsch's form for a 
rational function on a surface of genus 1: 

= fr + fr/R(Q 
y <f>0 + ^ ( 0 ' 

where the <f>'s and i//'s are polynomials in t of degree < m/2 (Clebsch [1864, 
p. 222]). 

Fuchs failed to discuss the cases where co -> 00 as z -> z0 with complete 
thoroughness. The necessary modifications to his theorem are clearly described 
in Ince [1926, p. 311], whose discussions in Chapters 13 and 14 are still the best 
introduction to this part of the theory of differential equations. Matsuda [1980] 
also notes that Fuchs missed a point here, in his account of first-order 
algebraic differential equations from the standpoint of modern differential 
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algebra. The example, due to Hill and Berry, which shows that Fuchs' 
conditions are incomplete, is quoted by both authors. It is 

(dy/dx)m=ym+r 

where r and m are coprime integers, 1 < r < m. It has the solution y — 
(r(x0 — x)/m)~m/r, and has a movable branch point at which y is infinite. 

Fuchs' results were extended to the general case by Poincare in his [1885], 
who showed that when the genus is greater than 1 the solution is an algebraic 
function of z. Poincare's methods were based on his new theory of automor-
phic functions; indeed he expressed some regrets at the end of his paper that 
the new differential equations do not lead to a new class of transcendental 
functions. As such they were generally found to be more complicated than 
those of Picard, which were put forward in his Traite d'analyse of 1893 (vol. 
Ill, pp. 81-87). Picard's methods were based on the theory of birational 
equivalences of surfaces, and used Hurwitz' observation [1887] that a surface 
of genus greater than 1 admits only a finite number of birational self-transfor­
mations. Picard considered the equation f(x, y, y') = 0 and a solution y for 
which y(x0) = y0 and y'(x0)

 = ^o f° r s o m e point x0. If analytic continuation 
of y from x0 to another nonsingular point xx produces a solution for which 
y(xi) — y\ anc* y\x\) — y'\> t n e n / (* i> y\> y{) ~ 0. Since y and y' can each be 
considered as functions of y0 and y^ and conversely, therefore is a birational 
equivalence between f(xQ, y0, y$) = 0 and/(jcl9 yl9 y[) — 0 regarded as curves 
in y and y'. The correspondence is only birational because it may fail where 
either curve has a multiple point. Complicated, but essentially elementary, 
considerations of the holomorphic integrands on each curve gave Picard a 
necessary and sufficient set of conditions for any transformation of two curves 
to be a birational equivalence. From these he could deduce Poincare's Theo­
rem. In his [1888] Painleve showed that the first-order differential equations 
having all their singular points (i.e. poles) fixed coincides with Fuchs' class of 
equations. Then in his [1898, 1900 and 1902], Painleve, again inspired by 
Picard, showed how these results can be extended, in modified form, to 
differential equations of higher order. In particular he gave his celebrated list 
of differential equations of the form d2y/dx2 — f(x, y, dy/dx), where / is 
rational in dy/dx, algebraic in y, and analytic in x, which have only fixed poles 
and branch points and cannot be solved by quadratures nor reduced to linear 
equations. We have traced Fuchs' influence as far as the creation of Painleve 
transcendents; it is time to turn back to Fuchs himself. 

The first lesson Fuchs drew from his own observations on algebraic differen­
tial equations was that there were many such which did not have solutions that 
were analytic functions! In his [1885] he claimed that Jacobi had long since 
shown that dx/du = R(x)l/2

9 where R(x) is a polynomial of degree greater 
than 4, has solutions which are not analytic functions of u. This drew a pained 
response from his friend Casorati, who wrote an admirably clear paper [1886] 
precisely to persuade Fuchs, and others of his opinion, that 

z — I R(x9y) dx 
Jo 
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does define an analytic function Z of z whenever R(x9 y) = 0 is an algebraic 
function. Casorati showed that the function was, in the language of the time, 
infinitely many-valued. Fuchs' mistake lay in accepting uncritically Jacobi's 
definition of analytic. Jacobi had indeed shown that the values of z for a given 
Z cluster arbitrarily close together in the whole plane, and on that account he 
said Z was not analytic as a function of z. Fuchs seems to have used Jacobi's 
terminology uncritically, although it conflicted with the contemporary sense of 
analytic (namely, locally expressible as a power series). For this he was 
privately criticized by Weierstrass, who wrote to his friend Sonya Kova-
levskaya on 14 March 1885 that Fuchs confused taking a given value with 
getting arbitrarily close to a given value. "The values of Z corresponding to 
one and the same value of z make up a countable set concerning which Cantor 
has proved incontrovertibly, as I am overjoyed to say, that there are not only 
infinitely many values which are not in it, but that these form a set of higher 
cardinality." (quoted in Biermann [1966, p. 212]). In Cantor's terminology, the 
values of z corresponding to a given Z are everywhere dense. Casorati showed, 
however, that there is a perfectly good fundamental region for Z as a function 
of z, but even when R is hyperelliptic and of degree 5 the region has two 
sheets. This led him to form the corresponding Riemann surface for Z which 
had infinitely many sheets. Casorati's work is discussed in detail in Bottazzini 
[1977, pp. 50-56], which also contains extracts from the Hermite-Casorati 
correspondence. Hermite wrote to Casorati (28 November 1885): "Besides, 
who would have disputed the dependence between the value of an integral and 
its limits. No one can raise any objection, neither to your reasoning nor its 
conclusion, concerning the entirely special law of this dependence which you 
have brought to light by employing Riemann surfaces." So it seems that Fuchs' 
mistake followed from his tenuous hold on the theory of Riemann surfaces and 
his neglect of the emerging Cantorian theory of point sets. 

By 1885, the theory of functions had two foci: the great theory of complex 
analytic functions, and the rapidly developing theory of integration (Hawkins 
[1980] gives a vivid account of the journey from the Riemann integral to that 
of Lebesgue). The rich terrain between these two centres lay largely unex­
plored. Fuchs' remarks, however bungled, indicate a growing awareness of its 
importance. However, Fuchs himself did not enter the new territory, perhaps 
because he had got off to such a bad start, and instead turned back to old 
themes. In a series of four papers [1886b, 1887a, b, c] he returned to his Jacobi 
inversion problem and illuminated it with his theorem that a Riemann surface 
which admits an involution is birationally equivalent to a hyperelliptic one. 
This result is a special case of a theorem of Hurwitz, which says that any 
Riemann surface admitting an automorphism of period n is birationally 
equivalent to one whose equation is F(sn

9 z) — 0. Hurwitz communicated this 
result by letter to Fuchs, who duly acknowledged it in his paper. Unhappily a 
priority dispute then arose, and Hurwitz attached a note to his paper alleging 
that Fuchs had slighted him (one suspects the hand of Klein). Fuchs replied in 
kind, and it seems Hurwitz thought better of it, for he withdrew the note when 
he republished the paper in the Mathematische Annalen in 1888, and would 
not allow it to be reprinted in the edition of his Werke (Hurwitz, Werke, I, 
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editor's note p. 241). There can be little doubt that the discoveries were 
independent, and Hurwitz's paper is far more general. 

But of greater interest is the last theme of Fuchs' work. He became 
increasingly concerned with the way the solutions to a differential equation 
depend on the coefficients. This is particularly a problem when a basis of 
solutions defined near one point is analytically continued to a second point 
where a basis of solutions is independently known. The problem is to find the 
matrix connecting the one system of solutions with the other. If this problem 
was solved, say for a linear equation, one would have an explicit representation 
of the monodromy group of the equation. In fact the problem is very difficult. 
Poincare discussed it in his [1884] in a way that none of his contemporaries 
seem to have liked because they never refer to it. Fuchs took up the case in 
which the monodromy matrices are independent of some of the coefficients of 
the equation, and was led to a system of first order partial differential 
equations which the solutions to the equation satisfy when considered as 
functions of those coefficients and the independent variable. In this way his 
work connected with his earlier study of hyperelliptic integrals as functions of 
a parameter, and also with contemporary work of Picard. The differential 
equations whose monodromy matrices are independent of a coefficient of the 
equation therefore have the property that their solutions are analytic functions 
of that coefficient as well as of the independent variable. 

Fuchs' most successful student, Ludwig Schlesinger, took up this question in 
a series of papers, culminating in his [1912]. He called the problem of 
characterizing those differential equations that are independent of some of the 
coefficients in the equation the Fuchs problem, and showed how it was 
connected with the Riemann problem (find a differential equation of the 
Fuchsian type with specified monodromy matrices at given singular points). 
He had earlier 'solved' this problem by means of the so-called method of 
continuity and Poincare's theory of zeta-Fuchsian functions [1905], but his 
method was justly criticized by Plemelj [1909], and he corrected some mistakes 
in his reply [1909]. At the same time Hilbert gave his discussion of the 
Riemann problem for differential equations in his paper [1905], and in 1906 
Plemelj extended Hilbert's methods to the «th order case. For this reason, and 
because Hilbert stated the Riemann problem as the 21st in his list of mathe­
matical problems, the problem is often called the Riemann-Hilbert problem. 
Unfortunately, a history of this fascinating problem would take us too far 
afield: the interested reader may consult Rohrl [1957] for a brief history and 
general solution, Forster [1977] for a simplified version in the special case 
where the equation is defined on a noncompact surface, and Katz [1976] for an 
algebraic-geometric reinterpretation of the problem. 

Schlesinger in his [1912] gave explicitly the necessary and sufficient condi­
tions the coefficients must satisfy if monodromy matrices are to be indepen­
dent of the location of a singular point. These conditions were a system of 
partial differential equations, and he showed that they were solvable. The 
solutions were meromorphic functions with fixed poles and branch points, and 
Schlesinger gave them explicitly when the differential equation was of the 
second order. In the particular case of a second-order equation of the Fuchsian 
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type with three fixed poles and one variable pole, T say, the Schlesinger 
equations, as they are called, reduce to an ordinary differential equation for a 
function of T which Fuchs' son Richard had already shown [1905] was one of 
Painleve's types. (In fact, it is the most general of them.) However, Painleve 
omitted it from his celebrated list, and it was first put there by Gambier [1906] 
in the course of a successful attempt to consummate Painleve's work. 

Nonlinear ordinary and partial differential equations with explicit solutions 
are rare, and apparently many of them share with Schlesinger's equation the 
property of representing integrability conditions for deformations of linear 
equations. Thus the 'isospectraP deformation of the Schrodinger operator is 
governed by the Korteweg-de Vries equation. A good starting point for 
modern work on such problems is Flaschka and Newell [1980], who also 
indicate some of the connections with physics that seem to arise. 

Fuchs continued to work on mathematics right up to his death, which came 
when he was taking a walk on April 26, 1902. He was just nine days short of 
his 69th birthday. Biermann, whose study [1973] of Berlin University 1810-1920 
is an essential starting point for any study of German mathematics in the 
period, quotes Fuchs' friend Koenigsberger as saying (p. 103) that Fuchs was 
"Indecisive and anxious, procrastinating and easily swayed, yet humorous and 
quite unselfishly kind". His colleagues seem to have liked him, and certainly 
something of his good qualities comes through in his photograph, which adorns 
the three volumes of his Collected Works, edited by Schlesinger and Richard 
Fuchs between 1904 and 1909. 

Conclusion. Fuchs's career has invited easy simplifications. Some, notably 
his students Heffter and Schlesinger, have praised him for opening up a new 
mathematical province, a judgement shared by Hamburger and others at 
Berlin. On the other hand, Klein never missed an opportunity to speak 
slightingly of Fuchs' work, and as late as his Entwicklung der Mathematik 
[1926, p. 270] said of Fuchs and his students that they formed "a typical 
example of a strictly limited 'School'" and that Fuchs "did not proceed further 
on paths taken by Riemann, but worked directly with the formulae in an 
elementary way". Both types of judgement reveal more about the speakers than 
their subject. Fuchs was indeed the leading Weierstrassian analyst of his day, 
and so naturally was regarded highly in Berlin. But his work was more fertile 
in other hands than his own, when it was connected to other traditions than 
those favoured in Berlin. Personal feelings aside, Fuchs' interests were indeed 
not central in Gottingen after the First World War, and partly as a result they 
have not recovered their former status in the world since. The monodromy 
problem seems only now to be capable of solution, and with the emerging 
theory of /?-adic differential equations Fuchs's stock will probably rise. The 
Fuchsian class of differential equations is of interest to algebraic geometers, 
and the Picard-Fuchs equation seems an appropriate reminder of his interest in 
treating the coefficients of differential equations as parameters. But it would be 
idle to debate the justice of remembering Fuchs by things Fuchsian. Rather, 
Fuchs' career remains of interest because it shows clearly and dramatically how 
mathematical ideas are many-sided, and how many new ideas may be needed 
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to solve a problem. There is an ironic truth in the assessment that Fuchs 
opened up a new province: repeatedly Fuchs pointed to problems in analysis 
that could best be solved by group theory. Denying himself this tool, which 
belonged to the younger generation, one might say that Fuchs could only stand 
like Moses and gaze upon the promised land. So our interest is not exclusively 
in Fuchs but also in his relationship to others, such as Klein, Hurwitz, and, 
above all, Poincare. Finally, his career and the subsequent decline in his 
reputation dramatically illustrate how solutions in mathematics lead on to 
other problems, and how obstinately some problems force mathematicians to 
change what they regard as answers. The many interesting discoveries about 
the monodromy of differential equations made since Fuchs' time still fall short 
of answering the simple and direct questions he had in mind when investigat­
ing the relationship between ordinary linear differential equations and their 
integrals. 

Appendix. The referee has kindly reminded me that two other papers by 
Riemann are of considerable interest in the historical study of differential 
equations. One is number XXI in the second edition of his Werke, and dates 
apparently from February 20, 1857. In this paper Riemann considered «th-
order differential equations all of whose monodromy matrices are diagonaliz-
able, and showed how to write down the general form of such an equation 
when none of its solutions ever become "infinitely great to an infinitely great 
order", as he put it. Consequently, he obtained Fuchs' characterization of such 
an equation, although he presented it in the form it takes when oo is an 
ordinary point. The second paper consists of notes of some of Riemann's 
lectures from the winter semester 1858/59 taken by von Bezold, which are 
even more remarkable. Riemann first considered the integral form of the 
solutions to the hypergeometric equation, and then went on to look at 
quotients to the solutions of such equations and the inverse function to such 
quotients. He even showed how to recapture a differential equation with 
algebraic coefficients when given a function invariant under specified mono­
dromy transformations; this is the origin of Hilbert's 21st problem. He 
investigated in particular when the quotient is algebraic, and was led in this 
way to discover some results first published by Schwarz. The lectures conclude 
with a discussion of the modular function k2 from this point of view; Riemann 
correctly describes its fundamental domain. Riemann may have seen this 
description in Gauss' Nachlass, which he was helping to edit, however, it is 
ironic to notice that the editorial team, led by Schering, eventually misunder­
stood this Gaussian fragment when they first published it in Gauss' Werke. 

It is hard to assess the historical significance of these papers by Riemann. 
They have been well edited, perhaps one should say thoroughly edited, by 
Weber and Wirtinger, so one cannot be sure what has been done beyond the 
correction of mathematical mistakes in the manuscripts. The first paper was 
not published until 1876, the second not until 1902, and neither seems to have 
exerted any influence beforehand. But it is indisputable that Riemann saw 
some of the best ideas of Fuchs and Schwarz on differential equations before 
they did, although I am sure that their discoveries were made entirely indepen­
dently. Wirtinger, in his lecture to the Heidelberg International Congress of 
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1904 (Proceedings, p. 124) tells us that von Bezold was then at the commence­
ment of his studies and could not appreciate Riemann's lectures at the time, 
but that he later brought them to the attention of his colleagues in Berlin. 
Fuchs in particular had a copy made for his own use in 1894. But von Bezold 
was a meteorologist and seems to have done nothing with Riemann's work 
himself. I have treated these questions in more detail in my [1983b] (to appear). 

BIBLIOGRAPHY 

F. Baldassari and B. Dwork (1979), On second order linear differential equations with algebraic 
solutions, Amer. J. Math. 101,42-76. 

K-R. Biermann (1966), Karl Weierstrass. Ausgewahlte Aspekte seiner Biographie, J. Math. 223, 
191-220. 

(1973), Die Mathematik und ihre Dozenten an der Berliner Universitat, 1810-1920. 
Akademie Verlag, Berlin. 

U. Bottazzini (1977), Le funzioni a periodi multipli nella corrispondenza tra Hermite e Casorati, 
Arch. Hist. Exact Sci. 18, 39-88. 

F. Brioschi (1879), Sopra una classe di equazioni differenziali lineari delsecondo ordine, Ann. Mat. 
(II) 9, 11-20 = Opere, vol. II, no. LXXIII (1901), 177-187. 

C. Briot and J. Bouquet (1856a) Etude desfonctions d'une variable imaginaire, J. Ecole Polytech. 
21,85-132. 

(1856b), Recherches sur les proprietes des fonctions definies par des equations differe­
nces, ibid., 133-198. 

F. Casorati (1886), Les lieux fondamentaux des fonctions inverses des integrates abeliennes et en 
particulier les fonctions inverses des integrates elliptiques de 2eme et 3eme espece, Acta Math. 8, 
360-386 = Opere, I, 1951, 239-265. 

A. L. Cauchy (1835), Memoire sur Vintegration des equations differentiates, Prague. 
(1840), Memoire sur Vintegration des equations differentielles, Exercises d'Analyse et de 

Physique Mathematique. II, Paris = Oeuvres completes, (2) vol. 11, 399-465. 
A. Cayley (1883), On the Schwarzian derivative and the polyhedral functions, Trans. Cambridge 

Philos. Soc. 13, 5-68 = Collected mathematical papers, vol. 11, 148-216. 
R. F. A. Clebsch (1864), Ueber die Anwendung der Abelschen Functionen in der Geometrie, J. 

Math. 63, 189-243. 
R. F. A. Clebsch and P. Gordan (1866), Theorie der Abelschen Functionen, Teubner, Leipzig. 
C. H. Clemens (1980), A scrapbook of complex curve theory, Plenum, New York and London. 
R. Dedekind (1877), Schreiben an Herrn Borchardt iiber die Theorie der elliptischen Modulfunc-

tionen, J. Math. 83, 265-292 = Werke, I, Chelsea, New York, 1969. 
H. Flaschka and A. C. Newell (1980), Monodromy and spectrum-preserving deformations. I, 

Comm. Math. Phys. 76, 65-116. 
O. Forster (1977), Riemannsche Flachen, Springer-Verlag, Berlin and New York. 
F. G. Frobenius (1873a), Uber die Integration der linearen Differentialgleichungen durch Reihen, 

J. Math. 76, 214-235 = Gesammelte Abhandlungen, I, 84-105, Springer-Verlag, Berlin and New 
York. 

(1837b), Uber den Begriff der Irreducibilitat in der Theorie der linearen Differentialg­
leichungen, op. cit 76, 236-270 = Gesammelte Abhandlungen, I, 106-140. 

(1875), Uber die regulare Integrate der linearen Differentialgleichungen, op. cit 80, 
317-333 = Gesammelte Abhandlungen, I, 232-248. 

L. I. Fuchs (1865), Zur Theorie der linearen Differentialgleichungen mit veranderlichen Coefficien-
ten, Jahrsber. Gewerbeschule, Berlin, Ostern = Werke, I, 111-158. 

(1866), ibid., J. Math. 66, 121-160 = Werke, I, 159-204. 
(1868), ibid., Erganzungen zu der im 66-sten Bande dieses Journal enthaltenen Abhand-

lung, J. Math. 68, 354-385 = Werke, I, 205-240. 
(1870a), Die Periodicitatsmoduln der hyperelliptischen Integrate als Functionen eines 

Parameters aufgefasst, J. Math. 71, 91-127 = Werke, I, 241-282. 
(1870b), Uber eine rationale Verbindung der Periodicitatsmoduln der hyperelliptischen 

Integrate, J. Math. 71, 128-136 = Werke, I, 283-294. 



22 J. J. GRAY 

(1870c), Bemerkungen zu der Abhandlungen "Uber hypergeometrische Functionen nter 
Ordnung" in diesem Journal, 71, 316 = J. Math. 72, 255-262 = Werke, I, 311-320. 

(1871a), Uber die Form der Argumente der Thetafunctionen und uber die Bestimmung von 
0(0,... ,0) als function der Klassenmoduln, J. Math. 73, 305-323 = Werke, I, 321-342. 

(1871b), Uber die linearen Differentialgleichungen, welchen die Periodicitatsmoduln der 
Abelschen Integrate genugnen, und uber verschiedene Arten von Differentialgleichungen fur 
0(0,0,... ,0), J. Math. 73, 324-339 = Werke, I, 343-360. 

(1875), Uber die linearen Differentialgleichungen zweiter Ordnung, welche algebraische 
Integrale besitzen, und eine neue Anwendung der Invariantentheorie..., Nachr. Konigl., Gesellschaft 
Wiss., Gottingen, pp. 568-581, 612-613 = Werke, II, 1-10. 

(1876a), Uber die linearen Differentialgleichungen zweiter Ordnung, welche algebraische 
Integrale besitzen, und eine neue Anwendung der Invariantentheorie, J. Math. 81, 97-142 = Werke, 
II, 11-62. 

(1876b), Extrait d'une lettre adressee a M. Hermite, J. de Math. (3) 2, 158-160 = Werke, 
II, 63-66. 

(1876c), Sur les equations differentielles lineaires du second ordre, Comptes Rendus 82, 
1494-1497; ibid. 83, 46-47 = Werke, II, 67-72. 

(1877a), Selbstanzeige der Abhandlung: "Uber die linearen Differentialgleichungen zweiter 
Ordnung, welche algebraische Integrale besitzen und eine neue Anwendung der Invariantentheorie'*, 
Borchardts Journal 81, 97, sqq. Rep. Math., I, 1-9 = Werke, II, 73-86. 

(1877b), Sur quelques proprietes des integrales des equations differentielles, auxquelles 
satisfont les modules de periodicite des integrales elliptiques des deux premieres especes. Extrait d'une 
lettre adressee a M. Hermite, J. Math. 83, 13-37 = Werke, II, 87-114. 

(1878a), Uber die linearen Differentialgleichungen zweiter Ordnung, welche algebraische 
Integrale besitzen. Zweite Abhandlung, J. Math. 85, 1-25 = Werke, II, 115-144. 

(1877c), Extrait d'une lettre adressee a M. Hermite, Comptes Rendus 85, 947-950 = 
Werke, II, 145-150. 

(1878b), Uber eine Klasse von Differentialgleichungen, welche durch Abelsche oder 
elliptische Functionen integrierbar sind. Nachr. Konigl., Gesellschaft Wiss., Gottingen, pp. 19-32; 
Ann. Mat. (II) 9, 25-35 = Werke, II, 151-160. 

(1878c), Sur les equations differentielles lineaires qui admettent des integrales dont les 
differentielles logarithmiques sont des fonctions doublement periodiques. Extrait d'une lettre adressee 
a M. Hermite, J. de Math. (3) 4, 125-140 = Werke, II, 161-176. 

(1879a), Selbstanzeige der Abhandlung; "Sur quelques proprietes des integrales des 
equations differentielles, auxquelles satisfont les modules de periodicite des integrales elliptiques des 
deux premieres especes. Extrait d'une lettre adressee a M. Hermite", Borchardts Journal 83, 13, 
sqq. Rep. Math. 2, 235-240 = Werke, II, 177-184. 

(1880a), Uber eine Klasse von Functionen mehrerer Variabeln, welche durche Umkehrung 
der Integrale von Losungen der linearen Differentialgleichungen mit rationalen Coefficienten entste­
hen, Nachr. Konigl., Gesellschaft Wiss.,Gottingen, pp. 170-176 = Werke, II, 185-190. 

(1880b), Uber eine Klasse von Functionen mehrerer Variabeln, welche durch Umkehrung 
der Integrale von Losungen der linearen Differentialgleichungen mit rationalen Coefficienten entste­
hen, J. Math. 89, 151-169 = Werke, II, 191-212. 

(1880c), Sur une classe de fonctions de plusieurs variables tirees de Vinversion des 
integrales de solutions des equations differentielles lineaires dont les coefficients sont des fonctions 
rationnelles. Extrait d'une lettre adressee a M. Hermite, Comptes Rendus 90, 678-680, 735-736 = 
Werke, II, 213-218. 

(1880d), Uber die Functionen, welche durch Umkehrung der Integrale von Losungen der 
linearen Differentialgleichungen entstehen, Nachr. Konigl., Gesellschaft Wiss., Gottingen, pp. 
445-453 = Werke, II, 219-224. 

(1881a), Auszug aus einem Schreiben des Herrn L. Fuchs an C. W. Borchardt, J. Math. 90, 
71-73 = Werke, II, 225-228. 

(1880e), Sur les fonctions provenant del'inversion des integrales des solutions des equations 
differentielles lineaires..., Bull. Sci. Math. Astronomi. (2) 4, 328-336 = Werke, II, 229-238. 

(1881b), Uber Functionen zweier Variabeln, welche durch Umkehrung der Integrale zweier 
gegebener Functionen entstehen..., Abh. Konigl., Gesellschaft Wiss., Gottingen 27, 1-39 = Werke, 
II, 239-274. 



FUCHS AND THE THEORY OF DIFFERENTIAL EQUATIONS 2 3 

(1881c), Sur les fonctions de deux variables qui naissent de Vinversion des integrates de 
deux fonctions donnees. Extrait d' une lettre adressee a M. Hermite, Comptes Rendus 92, 1330-1331, 
1401-1403 = Werke, II, 275-282. 

(188Id), Sur une equation differentiate de la forme f(u, du/dz) = 0. Extrait d'une lettre 
adressee a M. Hermite, Comptes Rendus 93, 1063-1065 = Werke, II, 283-284. 

(1882a), Uber Functionen, welche durch lineare Substitutionen unverandert bleiben, Nachr. 
Konigl., Gesellschaft Wiss., Gottingen, pp. 81-84 = Werke, II, 285-288. 

(1882b), Uber lineare homogene Differentialgleichungen, zwischen deren Integralen homo-
gene Relationen hoheren als ersten Grades bestehen, Sitzungsberichte Gesellschaft Wiss., Konigl. 
Preuss Akad. Wiss. Berlin, pp. 703-710 = Werke, II, 289-298. 

(1882c), Uber lineare homogene Differentialgleichungen, zwischen deren Integralen homo-
gene Relation hoheren als ersten Grades bestehen, Acta Math. 1, 321-362 = Werke, II, 299-340. 

(1884a), Uber Differentialgleichungen, deren Integrate feste Verzweigungspunkte besitzen, 
Sitzungsberichte Kdnigl. Preuss Akad. Wiss. Berlin, pp. 699-710 = Werke, II, 355-368. 

(1884b), Antrittsrede gehalten am 3. Juli 1884 in der bffentlichen Sitzung zur Feier des 
LEIBNIZtages, Sitzungsberichte Konigl. Preuss Akad. Wiss. Berlin, pp. 744-747 = Werke, II, 
369-372. 

(1884c), Uber eine Form, in welche sich das allgemeine Integral einer Differentialgleichung 
erster Ordnung bringen lasst, wenn dasselbe algebraisch ist, Sitzungsberichte Konigl. Preuss Akad. 
Wiss. Berlin, pp. 1171-1177 = Werke, II, 373-380. 

(1885), Uber den Charakter der Integrate von Differentialgleichungen zwischen complexen 
Variabeln, Sitzungsberichte Konigl. Preuss Akad. Wiss., Berlin, pp. 5-12 — Werke, II, 381-390. 

(1886a), Uber die Werthe, welche die Integrate einer Differentialgleichung erster Ordnung 
in singularen Punkten annehmen konnen, Sitzungsberichte Konigl. Preuss. Akad. Wiss., Berlin, pp. 
279-300 = Werke, II, 391-416. 

(1886b), Uber diejenigen algebraischen Gebilde, welche eine Involution zulassen, 
Sitzungsberichte Konigl. Preuss Akad.Wiss., zu Berlin, pp. 797-804 = Werke, II, 417-426. 

(1886c), Uber eine Klasse linearer Differentialgleichungen zweiter Ordnung, J. Math. 100, 
189-200 = Werke, II, 427-440. 

(1887a), Uber die Umkehrung von Functionen zweier Veranderlichen, Sitzungsberichte 
Konigl. Preuss Akad. Wiss., Berlin, pp. 99-108 = Werke, II, 441-452. 

(1887b), Uber einen Satz aus der Theorie der algebraischen Functionen und uber eine 
Anwendung desselben auf die Differentialgleichungen zweiter Ordnung, Sitzungsberichte Konigl. 
Preuss Akad. Wiss., Berlin, pp. 159-166 = Werke, II, 453-462. 

(1887c), Bemerkungen zu einer Note des Herrn HURWITZ, enthalten in No. 6 Jahrg. 
1887, S. 104 sqq. der Nachrichten, Nachr. Konigl., Gesellschaft Wiss., Gottingen, pp. 345-347 = 
Werke, II, 463-466. 

(1887d), Uber Relationen zwischen den Integralen von Differentialgleichungen, 
Sitzungsberichte KSnigl. Preuss Akad. Wiss., Berlin, pp. 1077-1094 = Werke, II, 467-487. 

(1888), Zur Theorie der linearen Differentialgleichungen, Sitzungsberichte Konigl. Preuss 
Akad. Wiss., Berlin; Einleitung und No. 1-7, 1888, pp. 1115-1126: No. 8-15, 1888, pp. 
1273-1290; No. 16-21, 1889, pp. 713-726; No. 22-31, 1890, pp. 21-38 = Werke, III, 1-74. 

(1890), Uber algebraisch integrierbare lineare Differentialgleichungen, Sitzungsberichte 
Konigl. Preuss Akad. Wiss., Berlin, pp. 469-488 = Werke, III, 81-98. 

(1892), Uber lineare Differentialgleichungen, welche von Parametern unabhangige Sub­
stitutionsgruppen besitzen, Sitzungsberichte Konigl. Preuss Akad. Wiss., Berlin, pp. 157-176 = 
Werke, III, 117-140. 

(1893), Uber lineare Differentialgleichungen, welche von Parametern unabhangige Sub-
stitutionsgruppen besitzen, Sitzungsberichte Konigl. Preuss Akad. Wiss., Berlin, Einleitung und No. 
1-4, 1893, pp. 975-988; No 5-8, 1894, S. 1117-1127 = Werke, III, 169-198. 

(1904-1909), Gesammelte Mathematische Abhandlungen, 3 vols. (R. Fuchs and L. 
Schlesinger, eds.), Berlin. 

R. Fuchs (1905), Sur quelques equations differentiates lineaires du second ordre, Comptes Rendus 
141, 555-558. 

B. Gambier (1906), Sur les equations differentieltes du second ordre et du premier degre dont 
rintegrate generate est a points critiques fixes, Comptes Rendus 143, 741-743. 



24 J. J. GRAY 

C. F. Gauss (1812a), Disquisitiones generates circa seriem infinitam, Pars prior, Comm. Soc. Reg. 
Gottingen, II = Werke, III, 1876, 123-162. 

(1812b), Determinatio seriei nostrae per aequationem differentialem secundi ordinis, 
ms. = Werke, III, 207-230. 

P. Gordan (1868), Beweis, dass jede Covariante und Invariante einer binaren Form eine ganze 
Function mit numerischen coefficienten einer endlichen Anzhal solcher Formen ist, J. Math. 69, 
323-354. 

J. J. Gray (1981), Les trois supplements au memoire de Poincare, ecrit en 1880, sur les fonctions 
fuchsiennes et les equations differentielles, Comptes Rendus 293, 87-90. 

(1982), From the history of a simple group, Math. Intelligencer 4, 59-67. 
(1983a), The three supplements to Poincare'sprize essay of 1880 on Fuchsian functions and 

differential equations, Arch. Intemat. Hist. Sci. (to appear). 
, (1983b), Differential equations and group theory from Riemann to Poincare (to appear). 

G. H. Halphen (1884), Memoire sur la reduction des equations differentielles lineaires aux formes 
integrables, Memoires presentees par divers savants a l'Academie des Sciences, vol. 28, pp. 
1-260 = Oeuvres, III, 1921, 1-260. 

(1888), Fonctions elliptiques. II, Paris. 
M. Hamburger (1873), Bemerkungen iiber die Form der Integrate der linearen Differential-

gleichungen mit veranderlichen Coefficienten, J. Math. 76, 113-125. 
T. Hawkins (1977), Weierstrass and the theory of matrices, Arch. Hist. Exact Sci. 17, 119-163. 

(1980), The origins of modern theories of integration, From the Calculus to Set Theory, 
1630-1910, Duckworth, pp. 149-180. 

C. Hermite (1877-1882), Sur quelques applications des fonctions elliptiques, Comptes Rendus 
85-94, passim = Oeuvres, III, 266-418. 

K. Heun (1889), Zur Theorie der Riemann'schen functionen zweiter Ordnung mit vier Verzwei-
gunspunkten, Math. Ann. 33, 161-179. 

D. Hilbert (1905), Uber eine Anwendung der Integralgleichungen auf ein Problem der Funktionen 
Theorie, Verhandlungen des dritten intemationalen Mathematiker-Kongresses 1904, Teubner, 
Leipzig, pp. 233-240. 

A. Hurwitz (1887), Uber diejenigen algebraische Gebilde, welche eindeutige Transformationen in 
sich zulassen, Nachr. Konigl., Gesellschaft Wiss., Gottingen, pp. 85-107; reprinted in Werke (I), 
no. 12, pp. 241-259 without the appendix. 

E. L. Ince (1926), Ordinary differential equations, Longmans. 
C. Jordan (1870), Traite des substitutions et des equations algebriques, Paris. 

(1876), Sur les equations du second ordre dont les integrates sont algebriques, Comptes 
Rendus 82, 605-607 = Oeuvres, II, 1-4. 

(1878), Memoire sur les equations differentielles lineaires a integrate algebrique, J. Math. 
84, 89-215 = Oeuvres, II, 13-140. 

(1880), Sur la determination des groupes d 'ordre fini contenus dans le groupe lineaire, Atti 
Accad. Napoli 8, no. 11 = Oeuvres, II, 177-218. 

N. M. Katz (1976), An overview of Deligne's work on Hilbert's twenty-first problem, Mathemati­
cal Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math., vol. 28, Amen Math. 
Soc., Providence, R. I., pp. 537-557. 

C. F. Klein (1875/76), Uber binare Formen mit linearen Transformationen in sich selbst, Math. 
Ann. 9, 183-208 = Gesammelte Mathematische Abhandlungen, II, no. LI, 275-301. 

(1876), Uber [algebraisch integrierbare] lineare Differentialgleichungen. I, Math. Ann. 11, 
115-118 = Gesammelte Mathematische Abhandlungen, II, no. LII, 302-306. 

(1877), Review in Fortschritte der Mathematik of FMC/W[ 1876a]. 
(1878/79), Uber die Transformationen der elliptischen Funktionen und die Auflosung der 

Gleichungen Fiinften Grades, Math. Ann. 14, 111-172 = Gesammelte Mathematische Abhandlun­
gen, II, no. LXXXII, 13-7'5. 

(1921/23), Gesammelte Mathematische Abhandlungen, 3 vols, Springer-Verlag, Berlin. 
(1926), Vorlesungen iiber die Entwicklung der Mathematik, im 19. Jahrhundert, reprinted 

by Chelsea, New York, 1967, 2 vols in 1. 
E. E. Kummer (1834), De generali quadam aequatione differentiali tertii ordinis, Programme of 

the Liegnitz Gymnasium = J. Math. 100 (1887), 1-9 = Collected Papers, II, 33-39. 
(1836), Uber die hypergeometrische Reihe..., J. Math. 15, 39-83, 127-172 = Collected 

Papers, II, 75-166. 



FUCHS AND THE THEORY OF DIFFERENTIAL EQUATIONS 2 5 

G. Lame (1845), Sur plusieurs theoremes d? analyse demontres par la theorie des surfaces 
orthogonales, Comptes Rendus 21, 112-117. 

A. M. Legendre (1825), Traite desfonctions elliptiques et des integrates Euleriennes, 3 vols., Paris. 
M. Matsuda (1980), First order algebraic differential equations—a differential algebraic approach, 

Lecture Notes in Math., vol. 804, Springer-Verlag, Berlin and New York. 
G. Mittag-Leffler (1880), Sur les equations differentielles lineaires a coefficients doublement 

periodiques, Comptes Rendus 90, 299-300. 
E. Neuenschwander (1978a), The Casorati-Weierstrass theorem, Historia Math. 5, 139-166. 

(1978b), Der Nachlass von Casorati (1835-1890) in Pavia, Arch. Hist. Exact Sci. 19, 
1-89. 

(1981), Studes in the history of complex function theory. II, Bull. Amer. Math. Soc. (N.S.) 
5,87-105. 

P. Painleve (1888), Sur les equations differentielles du premier ordre, Comptes Rendus 107, 
221-224, 320-323, 724-726. 

(1898), Sur la determination explicite des equations differentielles du second ordre a points 
critiques fixes, Comptes Rendus 126, 1329-1332. 

(1900), Sur les equations differentielles d'ordre quelconque a points critiques fixes, 
Comptes Rendus 130, 1112-1115. 

(1902), Sur les equations differentielles du second ordre et d'ordre superieur, dont 
rintegrate generate est uniforme, Acta Math. 25, 1-86. 

E. Picard (1879), Sur une generalisation des fonctions periodiques et sur certaines equations 
differentielles lineaires, Comptes Rendus 89, 140-144. 

(1880a), Sur une classe d 'equations differentielles lineaires, Comptes Rendus 90, 128-131. 
(1880b), Sur les equations differentielles lineaires a coefficients doublement periodiques, 

Comptes Rendus 90, 293-295. 
(1893), Traited* analyse. Ill, Paris. 

J. Plemelj (1909), Uber Schlesingers "Beweis" der Existenz Riemannscher Funktionenscharen mit 
gegebener Monodromiegruppe, Jahresber. Deutsch. Math.-Verein. 18, 15-20. 

(1906), Neuer Existenzbeweis des Riemannschen Functionssystems mit gegebener Mono­
dromiegruppe, Wien Akademische, Anzeiger. 

H. Poincare (1882a), Theorie des groupes Fuchsiens, Acta Math. 1, 1-62 = Oeuvres, II, 108-168. 
(1882b), Sur les fonctions Fuchsiennes, Acta Math. 1, 193-294 = Oeuvres, II, 169-257. 
(1884), Sur les groupes des equations lineaires, Acta Math. 4, 201-311 = Oeuvres, II, 

300-401. 
(1885) Sur un theoreme de M. Fuchs, Acta Math. 7, 1-32 = Oeuvres. Ill, 4-31. 
(1886), Sur les integrates irregulieres des equations lineaires, Acta Math. 8, 295-344 = 

Oeuvres, I, 290-332. 
(1908), Vinvention mathematique, Science et Methode, Paris, pp. 43-63. 
(1916-1954), Oeuvres, 11 vols., Paris. 

B. Riemann (1857a), Beitrage zur Theorie der durch Gauss'sche Reihe F(a, ft, y, x) darstellbaren 
Functionen, Konigl. Gesellschaft Wiss., Gottingen = Werke, 67-83. 

(1857b), Theorie der Abelschen Functionen, J. Math. 54, 115-155 = Werke. 88-144. 
H. Rohrl (1957), Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichun-

gen, Math. Ann. 133, 1-25. 
L. Schlesinger (1905), Zur Theorie der linearen Differentialgleichungen im Anschlusse an das 

Riemannsche Problem, J. Math. 130, 26-46. 
(1909), Bemerkung zum Kontinuitatsbeweise fur die Losbarkeit des Riemannschen Prob­

lems, Jahresber. Deutsch. Math.-Verein. 18, 21-25. 
(1912), Uber eine Klasse von Differentialsystemen beliebiger Ordung mit festen kritischen 

Punkten, J. Math. 141, 96-145. 
A. Schlissel (1976), The development of asymptotic solutions of linear ordinary differential 

equations, 1817-1920, Arch. Hist. Exact Sci. 16, 307-378. 
H. A. Schwarz (1872), Ueber diejenigen Falle, in welchen die Gaussische hypergeometrische Reihe 

eine algebraische Function ihres vierten Elementes darstellt, J. Math. 75, 292-335 = Abhandlungen, 
11,211-259. 

J. Thomae (1870), Uber die hbheren hypergeometrischen Reihen, insbesondere uber die Reihe..., 
Math. Ann. 2, 427-444. 



26 J. J. GRAY 

L. Thome (1872), Zur Theorie der linearen Differentialgleichungen, J. Math. 74, 193-217. 
H. Valentiner (1889), De endelige, Danish Acad. Publ. Ser. V, Vol. 6. 
K. T. W. Weierstrass (1842), Definition analytischer functionen einer Verdnderlichen vermittelst 

algebraischer Differentialgleichungen, ms = Werke, I, 75-84. 
(1856), Theorie der Abel'schen functionen, J. Math. 52, 285-339. 
(1868), Zur Theorie der bilinearen und quadratischen Formen, Monatsberichte der 

Akademie der Wissenschaften zu Berlin, 310-338 = Werke, II, 19-44. 

FACULTY OF MATHEMATICS, OPEN UNIVERSITY, MILTON KEYNES, MK7 6AA, BUCKINGHAM­

SHIRE, ENGLAND 

Current address: Department of Mathematics, Brandeis University, Waltham, Massachusetts 
02254 


