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INVARIANTS OF FORMAL GROUP LAW ACTIONS1 

BY ROBERT M. FOSSUM 

0. Introduction. In this note, k denotes a field of characteristic p > 0, and 
the letters T, X and Y are formal indeterminants. Let F: k[[T]] —• /c[[X,Y]] 
be a (fixed) one-dimensional formal group law [Dieudonné, Hazewinkel, Lazard, 
Lubin] of height h > 0. Let V denote a k[[T]] module of finite length. Suppose 
Ann(V) = (Tn). Let q = pe denote the least power of p such that n < q. 
It follows that the symmetric powers Sr(V) over k become k[[T}]-modules, 
annihilated by Tq, through the formal group law, viz: If F(T) = X + Y + 
E*,i>i CijX+Y' and ƒ is in St(V) and g is in Sa(V), then 

TU 9) = f Tg + (Tf)g + £ Citf* f)(T* g) 

in St+a(V). 
Denote by S.(V) the symmetric algebraic o n 7 ; so 

S.(V):=®Sr(V). 
r>0 

Then iS.(V') is a A;[[T]]-module annihilated by T9. The main purpose of 
this note is to announce and outline a proof of the theorem below. Several 
consequences and examples are included. 

THEOREM. Let S.{V)F := {ƒ G S.(V) : Tf = 0}. The set S.{V)F is a 
normal noetherian subring ofS.(V) of the same Krull dimension. Furthermore, 
S.(V)F is factorial. 

1. An outline of the proof. To prove the Theorem one can consider two 
cases: ht F = h = 1 and ht F = h j=-1. In case ht F = 1, the action on S.(V) 
is equivalent to an action of the cyclic group Z/qZ on S.(V). This case is 
considered, in full generality, in [Fossum, Griffith] and [Almkvist, Fossum]. 

So consider the case ht F / 1. It can be shown that there is a fixed power 
s of p, depending only on ht F , such that S.(V)S C S.(V)F. Then one can 
extend the action of T to the field of fractions L of S.(V) via 

T(f/g) = T(fg'-1)/g'. 

Then one concludes that LF is a field and 

S.{V)F =LFnS.{V), 

which shows that S.{V)F is a Krull domain and S.(V)F D MS.(y)s}, which 
shows that S.(V)F is noetherian and S.(V) is integral over S.(V)F. Hence, 
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the extension S.(V)F -> S.(V) is (PDE) (cf. [Fossum]). It remains to prove 
that S.(V)F is factorial. As S.(V) and S.(V)F are graded, it is sufficient 
to consider homogeneous ideals and to show that each homogeneous, prime, 
divisorial ideal p in S.(V)F is principal. One could accomplish this by using 
results in [Waterhouse], but there is also a straightforward calculation. 

Suppose p is a homogeneous prime divisorial ideal in S.(V)F. Let (pS.(V))** 
denote the divisorial ideal it generates in S.(V). This ideal is principal, 
generated by a homogeneous element ƒ in S.(V). It follows that 

f-1S.{V) = {xGL:xpcS.{V)}. 

Since f~xp c S.(V) and T(p) = 0, it follows easily that T(f-X)p c S.(V). 
Hence, there is an element a G S.(V) such that 

nri)=ria, or r(/s-i)=r-ia. 
Since degree T ( / 5 - 1 ) = degree / 5 _ 1 , it follows that degree a = 0, or that 
aek. Hence T{a) = 0. Then 

ru3-1) = r-v. 
Since T* = 0, one obtains that aq = 0 or a = 0. Hence, T(/ s~1) = 0. Then 

0 = T{fs) = fTif3-1) + Tif)/8-1 = T{f)fs-\ 

Hence, T(f) = 0, so ƒ G S.(F)F . Prom this one concludes that p = fS.{V)F. 
This concludes the (outline) of the proof. Details that are omitted will appear 
elsewhere. 

2. EXAMPLES. For each n G N, set y n := k[[T]]/(Tn). The Hilbert series 
of S.(Vn)

F is, by definition, the power series 

f>kfcsr(vgFKez[[t]]. 
r=0 

Denote this series by Ht(Vn,F). (The dependence on p is implicit.) In case 
F(T) = X + y -h X y (and so ht F = 1) these Hilbert series have been studied 
extensively in [Almkvist, Fossum]. In particular, for n = q = pc, 

H«(Vp., F) = p-4(l - t)-p' + g (^ - p^Xl - ipVpe"'j-

Some results are now available for the additive formal group law F(T) = X+Y 
(so ht F = 0). In this case, for q = pe, 

Ht(Vq,X + Y) = q-'Hl - *)-« + (q - 1)(1 -1*)-*/*} 

= (1 - t p ) " g / p -h 9 _ 1 {(1 - t)~q - (1 - t p ) - 9 / p } . 

This can be used to show that 

Ht{Vq-UX + Y) = (1 - #>)-*!* + (1 - ^ - ' { ( l " *)"* " (1 " tp)~q/p}-

This rational function of t is not unimodal for most q, and hence S ,.(Vr
q_i)(x+r) 

is not Gorenstein for these q. Thus S.(Vq-i)(
x+Y) is not Cohen-Macaulay. 

Evidence suggests that S.(Vn)
F is not Cohen-Macaulay for n > 4, except in 
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case p = 2 and n = 4 (cf. [Stanley]). The case p — 2 has been studied by 
[Bertin]. The Hubert series 

1 — t +1 2 -f £3 

i / t (F 4 , x+y+xy) = ( i _ t ) 2 ( i _ f 2 ) 2 ( i + f 2 ) ) 

which shows that S , . ( V 4 ) x + r + x r is not Cohen-Macaulay, since it is factorial 
and not Gorenstein. 

The Hilbert series, p = 2, for V4 is 

A calculation shows, for S.(V4) = /c[X3,X2,Xi,X0] with TX3 = X2 , TX2 = 
Xi , TXx = X0 , r X 0 = 0, and T{fg) = /(T^) + (Tf)g, that 

^.(v4)
x+r = k[x0,xlxlxlx3x

2
0+x2x1x0+x3

1}1 

which is a complete intersection. 
Further results will appear in more detail. 
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