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MILNOR ALGEBRAS AND EQUIVALENCE RELATIONS 
AMONG HOLOMORPHIC FUNCTIONS1 

BY STEPHEN S.-T. YAU 

Let On+i denote the ring of germs at the origin of holomorphic functions 
(Cn+1 ,0) —• C. As a ring 0n+i has a unique maximal ideal ra, the set of 
germs of holomorphic functions which vanish at the origin. Let Gn+\ be the 
set of germs at the origin of biholomorphisms <\>: (Cn+1 ,0) —• (Cn+1 ,0). The 
following are three fundamental equivalent relations in 0n+i-

DEFINITION 1. Let ƒ, g be two germs of holomorphic functions (Cn+1 ,0) —• 
(C,0). 

(i) ƒ is right equivalent to g if there exists a 0 G Gn+i such that ƒ' = go(f>. 
(ii) ƒ is right-left equivalent to g if there exists a 0 G Gn+i and ip G G\ 

such that ƒ = ip o g o (j). 
(iii) ƒ is contact equivalent to g if (V, 0) is biholomorphic equivalent to (VV, 0) 

where V = {z G C n + 1 : ƒ(*) - 0} and W = {z G C n + 1 : g(s) = 0}, i.e., 
there exists a <j> G Gn+i such that 0: (V,0) —• (W,0). 

One of the natural and fundamental problems in complex analytic geometry 
is to tell when two germs of holomorphic functions (Cn+1 ,0) —• (C,0) are 
equivalent in the sense of (i), (ii), or (iii) respectively in Definition 1. To answer 
the above problem, we need the following notations: 

f~1mi = < ]P ai f1 : ^2 a^% ^s a convergent power series in one variable >, 
\i>\ i>l J 

r) f r) f r) f 
A(/) = ideal in 0n+i generated by——, -—, . . . , -—, 

OXQ OX\ OXn 

a(f) = {gem:A(g)CA(f)}, 
B{ ƒ ) — {g € m : gis right equivalent to ƒ}, 

RL(f) — {g Em: gis right-left equivalent to ƒ}, 

K{f) = {9 Em: gis contact equivalent to ƒ}, 

A( ƒ) = {g Em: the moduli algebra of gis isomorphic to the 

moduli algebra of/, i.e., 0 n +i / ( / ,A( / ) ) = On+i/(g,A(gr))}, 

£(ƒ) = {<? e m : O n + 1 / ( / ,mA(/)) s Ön+i/(g,mA(g))}, 

Q(/) = {g ^ ^ : The Milnor algebra of gis isomorphic 
to Milnor algebra of/, i.e., On+i/A(/) = On+i/A(g)}. 
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To answer the above question, it suffices to characterize the relationships 
between R(f), RL(f), K_{f), <?(ƒ), A(f) and B(f). It is easy to check that we 
have 

R(f)cRL{f)cK{f)cMf) 
n n 

QU) B(f) 

THEOREM 1 (MATHER-YAU [2]). Suppose ƒ has isolated critical point at 
the origin. Then K_{f) = A{f) = B(f). 

THEOREM 2 (SHOSHITAISHVILI [3]). Suppose ƒ has isolated critical point at 
the origin. Then the following statements are equivalent. 

(i) ƒ is right equivalent to a weighted homogeneous polynomial. 

(ii)Q(/) = S(/)-
(iii)a(/)CmA(/). 

THEOREM 3 (SHOSHITAISHVILI [3]). Suppose ƒ has isolated critical point at 
the origin. ThenQ(f) = RL(f) if and only iff~1mi + raA(/) = a(f) + mA(f). 

In this note we announce that we can completely characterize the relation­
ships between R(f), RL(/), K{f), and Q(f). Theorem 9 and Corollary 11 
are very interesting. They say that we can put two different "embedding 
differentiate structures" on a singularity. 

PROPOSITION 4. Suppose ƒ has isolated critical point at the origin. Then 
the following statements are equivalent. 

(i) ƒ is right equivalent to a weighted homogeneous polynomial. 
(ii)£(/) = fi(/)-
(iii)/GmA(/). 

PROPOSITION 5. Suppose ƒ has isolated critical point at the origin. Then 
the following statements are equivalent. 

(i) ƒ is right equivalent to a weighted homogeneous polynomial. 
(n)R(f) = BL(f). 

(iii) f^rmCmAif). 

Propositions 4 and 5 are easy consequences of Theorem 2. We can prove 
that Theorem 2 remains true for arbitrary ƒ, i.e., ƒ may have an arbitrary 
nonisolated singularity at origin. 

THEOREM 6. In the following statements, (i)=*(ii) and (ii)=*(iii). 
(i) ƒ is right equivalent to a weighted homogeneous polynomial. 

(ii)Q(/) = fi(/)-
( i i i )a ( / )CmA(/) . 

As a consequence of Theorem 6, we have analogous statements as Proposi­
tions 5 and 6 for arbitrary ƒ. The proof of Theorem 6 is based on the following 
Lemma. 
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LEMMA. Let ƒ, g G 0n+i- Suppose f is weighted homogeneous, i.e., there 
exists a holomorphic map 

a : C * x C n + 1 - * C n + 1 , a(t,z0,...,zn) = (ta°z(h...1t
a"zn) 

and (ƒ o cr)(t,zo,...,zn) — tdf(zo,...,2n) wtoere ao, . . . ,a n and d are positive 
integers. If A(g) = A(/), then g G raA(#). 

THEOREM 7. Suppose ƒ /ias isolated critical point at the origin. Then the 
following statements are equivalent. 

(i)m(f)CmA(f). 
(ii) BL(f) = K(f). 

(iii) firm + mA( ƒ) = ( ƒ) + mA( ƒ). 

Unlike Propositions 4 and 5, Theorem 7 is new in a nontrivial sense. 
DEFINITION 2. Let ƒ G 0n+i. ƒ is called quasi-homogeneous if ƒ G raA(/). 

ƒ is called almost quasi-homogeneous if m(f) Ç raA(/). 
Suppose ƒ has isolated critical point at the origin. Then ƒ is quasi-homo­

geneous if and only if ƒ is right equivalent to a weighted homogeneous poly­
nomial. Therefore the singularities defined by quasi-homogeneous functions 
have very special properties. Because of Theorem 7, we expect that isolated 
singularities defined by almost quasi-homogeneous functions also have spe­
cial properties. The following is an example of an almost quasi-homogeneous 
function but not a quasi-homogeneous one. 

EXAMPLE. Let ƒ G O2. f{x, y) = Xs + y5 + x3y3. We have 

K(f) = Q(f) = RL(f)^R(f). 

ƒ is almost quasi-homogeneous but not quasi-homogeneous. 
It remains to characterize the relationship between Q(/) and K{f). The 

natural questions are whether K_(ƒ) c Q{ƒ) or whether Q(ƒ) C !£(ƒ)? The first 
question is equivalent to asking whether a Milnor algebra is an invariant of a 
singularity, i.e., whether a Milnor algebra is, up to isomorphism, independent 
of the defining equation of the singularity. The second question is more 
important. It asks whether complex structures of isolated singularities are 
determined by Milnor algebras. 

PROPOSITION 8. IfK{f) C Q(f), then ƒ G A(/) + raA2(/) where A2(/) is 
the ideal in 0n+1 generated by all second partial derivatives of f. 

PROOF. By a tangent space argument, we have 

(f) + mA(f)Ca(f) + mA(f). 

Therefore (1 + x0)ƒ £ a(ƒ) + raA(ƒ). Let g G a(ƒ) and ^ G m such that 

, ,„ , a/ ac? A %; a/ A a2/ 
3x0 3x0 j ^ 0 dxo dXj f^Q dxodx3 
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Since dg/dx0 G a(f) by definition of a(f), we have ƒ G A(/) + raA2(/). 
Q.E.D. 

The following example is due to Mather. 
EXAMPLE. There exists an ƒ such that f(x,y) = J2t=ix<liybi where 

(1) max(a^ — a,j, bi — bj) > 3 for i # j 

and ƒ <£ A(f) + A2(/); in particular, K£f) <£ Q(f) by Proposition 8. 
To prove this, it is easily seen that a necessary condition for ƒ G A(/) + 

A2(/) is that the six equations 

1 = diXi + biX2 + ai(di - l)x3 + dibiXt + 6»(6» - l)x5, 

i = 1, . . . , 6, have solutions x\,..., x$ G C. This is impossible if the matrix 

1 

1 

1 

1 

1 

1 

at 

a2 

« 3 

a± 

as 

a6 

h 
b2 

bs 

b4 

h 
be 

Q>i(o>i ~ 

a2(a2 -

a3(a3 -

04(04 -

as{as -

a6(ae -

- i ) 

- i ) 

- i ) 

- i ) 

- i ) 

- i ) 

Ol&l 

a2b2 

a3b3 

0464 

Û5&5 

aöbe 

61(61 -

62(62 -

63(63 -

64(64 -

65(65 -

66(66 -

-1 ) 

- 1 ) 

- 1 ) 

- 1 ) 

- 1 ) 

- 1 ) 

is nonsingular. Let A(a, b) denote its determinant. 
Thus, it is enough to show that there exist a = (ai,...,a^) G Z+ and 6 = 

(61,. . . , 66) G Ẑ _ such that (1) holds and the above matrix is nonsingular. 
(Notation: Z+ = {nonnegativeintegers},Q+ = {nonnegativerationals}.) Since 
the functions 1, a, b, a(a — 1), ab, b(b — 1) are linearly independent, there ex­
ist à = (ai , . . . ,o6) G Q+ and b = (61,...,66) G Q+ such that (1) holds and 
A(a, 6) 7e 0. Then A(Xa, Xb) is a polynomial in̂  X and is not identically zero. 
Hence there exists X > 1, for which Xâ G Z+, \b G Z+, and A(Xa, \b) =̂  0. 

THEOREM 9. For any n> 1, let f(x\,..., xn) be a non-quasi-homogeneous 
function with isolated critical point at the origin. LetF(xi,..., xn, yi,..., yn) = 
/ (x i , . . . , x n ) +/(î/i , . . . ,2/n). ^fcen t/iere extós G(xi , . . . ,xn , 2/i,...,2/n) £ 
C{xi , . . . ,x n , 2/1,..., 2/n} such that A(F) = A(G) andV = {(x,y): F(x,y) = 0} 
is not C°° diffeomorphic equivalent to W = {(x,t/): G(x,y) = 0} although V 
is homeomorphic equivalent to W, i.e., there does not exist a diffeomorphism 
H: (C2n,0) -> (C2n,0) such that H : (V,0) -+ (W,0). 

COROLLARY 10. Q(F) £ !£(ƒ). 

COROLLARY 11. For any n > 1, there exists a one-parameter family of 
non-quasi-homogeneous isolated singularities such that the Milnor algebras cor­
responding to the different parameters are the same; however, the diffeomorphic 
types of the singularities are not the same. 

We should remark that in [4] we have given criterions for two germs of 
holomorphic functions with isolated critical points to be right-left equivalent 
or right equivalent. 
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