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1. Introduction. In order to establish an Alexander duality theorem for 
compact subsets of Sn, N. E. Steenrod introduced in 1940 a new type of 
homology of metric compacta. The same problem led K. A. Sitnikov in 1951 to 
an equivalent theory. In 1960 J. Milnor [7] gave an axiomatic characterization 
of the Steenrod-Sitnikov homology. Several authors extended the theory to 
the case of Hausdorff compact spaces (see, e.g., [8, 9, 7 and 1]). 

The purpose of this announcement is to define a Steenrod-Sitnikov homol­
ogy theory for arbitrary topological spaces. We refer to it as strong homology. 
It is obtained by first developing a strong homology of inverse systems. The 
transition from spaces to systems is achieved by means of ANR-resolutions, 
a new tool developed by S. Mardeslc in [5] (also see [6]). Strong homology 
groups of a space are then defined as strong homology groups of any one of its 
ANR-resolutions. It is a consequence of our approach that strong homology 
is actually a functor on the strong shape category SSh introduced in [4]. 

2. Strong homology of inverse systems. We consider only inverse systems of 
topological spaces and maps X = (Xx,p\\,A) over directed cofinite sets. By 
a map of systems ƒ : X —• Y = (YM, q^, M) we mean an increasing function 
(p: M —• A and a collection of maps jfM : X^(M) —• YM, /J- € M, satisfying 

(!) /MP<P(M)<P(M') = W / M ' » M ̂  /*'• 

For a fixed Abelian group G we associate with X a chain complex G#(X; G), 
defined as follows. Let An, n > 0, denote the set of all increasing sequences 
X = ( \o, . . . , Xn) from A. A strong p-chain of X, p > 0, is a function x, which 
assigns to every X € An a singular (p + n)-chain x\ G Cp+n(Xx0;G). The 
boundary operator d: Cp+i(X;G) —• CP(X.]G) is defined by the formula 

(2) ( - i y W x = d(*x)-PXoX1#zXo " £ ( - 1 ) ^ ; 
i = i 

Received by the editors January 13, 1983. 
1980 Mathematics Subject Classification. Primary 55N07, 55P55, 54B25. 
Key words and phrases. Steenrod-Sitnikov homology, resolution, coherent homotopy, 

strong shape. 
© 1983 American Mathematical Society 

0273-0979/83 $1.00 + $.25 per page 
207 



208 JU. T. LISICA AND S. MARDEÖIÓ 

here d denotes the boundary of singular chains and \j is obtained from X 
by omitting Xj. By definition, HP(X;G) = HP(C#(X;G)). A map ƒ : X -• Y 
induces a chain mapping ƒ# : G#(X; G) —• G#(Y; G) defined by 

(3) (/#X)M = U0#(x<p(po)-<PÜ*nj)> » = (MO, • • • ,Mn) G M n . 

One proves that ((?ƒ)# = g# ƒ#. Consequently, ƒ induces a functorial homomor-
phism ƒ* : HP{X- G) - • tfp(Y; G). 

3. Coherent prohomotopy. Extending and simplifying previous work of 
Lisica [2, 3], the authors have defined in [4] a coherent prohomotopy category 
CPHTop. Its objects are systems X as in §2. The morphisms are coherent 
homotopy classes of coherent maps of systems ƒ : X —• Y, defined as follows. 
ƒ consists of an increasing function <p : M —> A and of maps 

/M: A n X I ^ n ) - > y M o , /i = ( / /o , . . . ,^ n )GM n , n > 0 , 

which satisfy 

(4) /„{dp, x) = I fH{t, x), 0 < i < n, 

U/in^PfPC/in-O^/Xn)^))» •? = ^ 

(5) / > ^ , x ) = /^( t ,x) , 0 < y < n ; 

here d™: A n _ 1 —• An , <r": A n + 1 —• An are the usual face and degeneracy 
operators and \ij {p3) is obtained from fi by omitting (repeating) \iy Every 
map of systems can be viewed as a coherent map by putting /M(t,x) = 
fnoP<pM<p(vn)(x)- A coherent homotopy from ƒ to ƒ' is a coherent map 
F : I x X —• Y, given by $ > <p, <p' and F^ such that 

(6) F(t, 0, x) = /M(t, P<p(Mn)*(Mn)(
x))> F(t, 1, x) = ƒ ̂ (t, *V(Mn)*(Mn)(aO). 

To define composition ƒ# of ƒ and g: Y —• Z = (Zv,iruv>,N), one decomposes 
An into subpolyhedra 

P?{( to , . . . , t n )GA n : to + --- + t i _ 1 < | < ^ o + --- + ^ } , t' = 0,.. . ,n, 

and considers maps a™ : P™ —• A n - Z , jSJ1: Pf —• A*, where a™(t) = 
(#, 2 t i + i , . . . , 2tn), /??(£) = (2t0 , . . . , 2tt-i , #) , # = 1 -sum of remaining terms. 
Then 

With every coherent map ƒ : X -» Y we now associate a chain mapping 
U : C#(X; G) - G#(Y; G), given by 

(8) (ƒ#*),* = £ / M O » ^ # ( A * X % t ) - ^ n ) ) - »eMn,xe GP(X; G). 

If ƒ is a map of systems, then (3) and (8) give chain homotopic chain maps. 
Chain maps (gr/)# and g#f# are chain homotopic. Coherently homotopic 
coherent maps induce chain homotopic chain maps. Consequently, strong 
homology is a functor of CPHTop. The proof of these assertions requires a 
tedious verification of explicit formulas giving the desired chain homotopies. 
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4. Resolutions. Let p: X —• X be a map of systems, i.e. a collection of 
maps p\ : X —• X \ such that p\\>p\> = p\ for X < X'. The map p is called a 
resolution of the space X provided the following conditions hold for any ANR 
(for metric spaces) P and any open covering V of P: 

(Rl) Every map ƒ : X —• P admits a X € A and a map g: X \ —• P such 
that the maps ƒ and 0p\ are V-near. 

(R2) There exists an open covering "V ' of P such that whenever X G À and 
maps g, g': X\ —• P have the property that gp\ and g'p\ are V-near, then 
there exists a X' > X such that gpw and g'pw are "V-near maps. 

The resolution of a map ƒ : X —• Y consists of resolutions p: X —> X, 
q: y —• Y and of a map of systems g : X —• Y such that gp = q ƒ. 

It was proved in [5] that topological spaces and maps always have ANR-
resolutions (all X \ and YM are ANR's). 

The following factorization theorem is crucial for the construction of our 
theory. Let p: X —• X be a resolution of X, let Y be an inverse system of 
ANR's and let ƒ : X —• Y be a coherent map. Then there exists a coherent 
map g : X —• Y such that ƒ and gp are coherently homotopic. Moreover, g is 
unique up to coherent homotopy. 

The proof of this theorem is rather long. It involves construction of the 
maps g^, \x € M n , by induction on n, using essentially cofiniteness of M, 
face and degeneracy properties of coherent maps and the uniqueness of linear 
homotopies in convex sets (see [4]). 

5. Strong homology of spaces. HP(X; G) is defined as HP(X; G), where 
p: X —• X is an ANR-resolution of X. The homomorphism ƒ* : HP(X;G) —• 
HP(Y; G) induced by a map can be defined as g* : HP(X.; G) —• HP(Y; G) (see 
§2), where (p, q, g) is an ANR-resolution of ƒ. More generally, if we have only 
ANR-resolutions p: X —• X and q: Y —• Y of X and Y, we apply to ƒ the 
factorization theorem and obtain a coherent map # : X —• Y, which induces g* 
as in §3. 

In [4] the authors defined a strong shape category SSh whose objects are all 
topological spaces. Morphisms F : X —• Y are given by triples (p, q, g), where 
p, q are ANR-resolutions and g is a morphism of CPHTop. If we assign to 
F the homomorphism g*, we see that strong homology is actually a functor 
on SSh. In particular, it satisfies the homotopy axiom. For ANR's and CW-
complexes, strong and singular homologies coincide. 

All our results also hold for pairs (X,A). The obtained homology is exact 
whenever A is P-embedded in X, e.g., when X is paracompact and A is closed. 
Restricted to compact metric pairs the theory satisfies the Milnor axioms. 
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