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Over the past fifteen years a consensus has developed among elementary 
particle physicists that most, if not all, interactions between the fundamental 
particles of nature are described by gauge theories. During the last decade it 
has become clear that a gauge theory, at least in its classical aspects, is in fact a 
theory of connections and curvatures in principal bundles and associated 
vector bundles over (suitably compactified) spacetime manifolds, and this 
recognition has led to some nontrivial mathematical results. The book by 
Bleecker is a timely introduction to the differential geometry and variational 
principles of classical gauge theories. 

Before proceeding to a brief review of the book, I would like to make a 
general remark on the strange interactions between mathematics and physics, 
and what Wigner called the " unreasonable effectiveness of mathematics" in 
modern physics, [Wigner, I960]. One must begin to wonder why, from time to 
time, the disciplines of theoretical physics and modern mathematics drift apart, 
seem to develop in relative independence from each other, and then suddenly 
find domains of overlap and cross-fertilization. This happened before in this 
century (I have in mind the parallel developments of quantum mechanics, 
Hubert space theory, and the theory of group representations, the develop­
ments of operator algebra theory and algebraic quantum field theory and 
statistical mechanics, inverse scattering methods and solitons, and most intri­
guing of all, the pervasiveness of modern differential geometry and topology in 
developments in classical mechanics, general relativity, and now gauge theo­
ries; another recent related development is "supersymmetry" also known as 
the theory of graded Lie algebras, which is rapidly making contacts with gauge 
theories both in its physical, and in its mathematical aspects). One can only 
wonder about the deeper reasons of these developments and look forward to 
further cross-fertilization. 

The term gauge invariance (Eichinvarianz in the original) together with the 
fundamental idea of a gauge theory was introduced by Hermann [Weyl, 1918] 
in an attempt to incorporate electromagnetism into a unified theory of gravita­
tion and electromagnetism. His idea of "gauging" consisted in extending 
Einstein's principle of relativity by assuming that the scale of length can vary 
smoothly from point to point in spacetime. This led to the introduction of a 
one-form A = A^dx* (identified with the electromagnetic four-potential) and 
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the corresponding "curvature" F — jF^dx*1 A dxv (identified with the electro­
magnetic field strength tensor i^„) satisfying the Maxwell equations. Although 
this beautiful theory did not survive Einstein's penetrating criticism (cf. the 
remarks by Weyl in [Weyl, 1955]), it was seminal to the development of gauge 
theories as we now know them, once it was recognized that the quantity to be 
gauged (i.e., made space-time dependent) was not the conformai factor in the 
metric, but rather the phase of the Schrödinger wave function (or its non-
abelian equivalent-the parameters of some nonabelian Lie group describing a 
particle symmetry). This recognition evolved over a decade from the original 
proposal through some early remarks by [Schrödinger, 1922], before the 
invention of quantum mechanics (at about the time de Broglie introduced his 
waves into quantum theory), followed by work of [Fock, 1927] and [London, 
1927], and was formulated in definitive form by [Weyl, 1929]. 

Before explaining the meaning of gauge invariance it is important to 
understand how fields enter into the description of elementary particles. At the 
classical level only two physical fields are known: the electromagnetic field, 
and the gravitational field. However, it is convenient to associate a field to 
each known particle in the following way: in quantum theory one may think of 
particles being created out of the vacuum into states with definite quantum 
numbers (energy, momentum, helicity = projection of spin onto momentum, 
charge, etc.). This is described by a creation operator acting on an appropriate 
Hubert space of states. The creation-annihilation operators, multiplied by 
functions describing the states of the particles are then combined into "opera­
tor-valued fields" (more correctly, operator-valued distributions). These opera­
tor-valued fields are then subjected to various transformations, such as rota­
tions, translations, Lorentz boosts, and gauge transformations, to which we 
turn our attention now. 

WeyFs gauge principle was based on the following idea: since the Schrö­
dinger (or Dirac) wave field \p describing an electron may be multiplied by a 
phase factor exp(*x), i.e., subjected to a transformation belonging to the group 
(7(1), without any observable effect (since all observables involve the product 
of \p and its complex conjugate *//, which is multiplied by exp(-z'x)), observers 
located at different points in space should be allowed to choose different phase 
factors. In other words, the action of the group U(l) on the function \p(x) is 
replaced by the action on it of the infinite-dimensional group whose elements 
are the point-dependent phase factors exp(*x(*)) (in present terminology the 
action of the automorphism group of a principal £/(l)-bundle on the sections 
of an associated line-bundle, the latter being represented by the wave functions 

*p(x): xp(x) h» exp(zx(*)W(*)) . 

However, since multiplication by exp(*x(*)) does not commute with partial 
differentiation with respect to coordinates and time, the transformed wave 
function no longer satisfies the Schrödinger (or Dirac) equation, i.e., these 
equations are not invariant under such gauge transformations "of the second 
kind". In order to restore invariance the partial derivatives (or exterior 
differentials) have to be replaced by "covariant derivatives" V^ = 3̂  + ieA^ 
where A is again the electromagnetic potential and e is the electron charge. The 
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commutator of two covariant derivatives (or the exterior differential of the 
one-form A^dx*) is easily identified with the electromagnetic field strength 
tensor (or two-form) F, which satisfies the Maxwell equation dF — 0. The 
other set of Maxwell equations follows, e.g., from the Schwarzschild action 
principle and identifies the electromagnetic four-current as the Weyl diver­
gence of F: d*F = */. This £/(l)-gauge theory became in the 1930s a standard 
tool of electrodynamics, and its definitive form was given by Pauli in his 1939 
Solvay report, [Pauli, 1941]. 

The more interesting nonabelian gauge theories made their first sporadic 
appearance in an obscure paper by Oscar Klein [1938] (a paper which went 
unnoticed by the physics community and was forgotten even by its author, to 
surface only in the 1970s, when gauge theories were honored by three Nobel 
prizes). The first widely known nonabelian gauge theory, in which the group 
which was "gauged" was the isospin group SU(2) is due to Chen Ning Yang 
and Robert L. Mills, [Yang-Mills, 1954] (a similar theory seems to have been 
proposed independently by [Shaw, 1954]). At that time it was believed that the 
forces between the nucléons (protons and neutrons) were mediated by the 
exchange of pions, and the interaction was to a good approximation invariant 
under the group SU(2), with the proton and neutron forming a fundamental 
doublet (isospinor) of this group and the three charge states of the pion 
(-h 1,0, -1) being a triplet in the adjoint representation (isovector). Fermi and 
Yang had considered a model in which the spin 1, isospin 1 pions were bound 
states of the more fundamental spin 1/2, isospin 1/2 nucléons and anti-
nucleons, and it was natural to search for a gauge mechanism responsible for 
the binding of these fermions into boson states. 

The Yang-Mills paper, although written for the specific example of SU(2), 
contained all the elements of contemporary nonabelian gauge theory, except 
for its explicit geometric interpretation in terms of principal bundles. However, 
a close reading of this paper reveals the deep geometric insight of its authors. It 
was pointed out that the analog of the electromagnetic four-potential is a 
covariant four-vector called the gauge potential, now recognized as the compo­
nents of (the pullback of) a connection one-form. This one-form is subject to 
gauge transformations "of the second kind". In modern notation, denoting the 
matrix-valued one-form by A, these transformations are A h-> Ad(g-1)^4 -f 
g~xdg, where g(x) is a smooth function on spacetime with values in the group 
SU(2). Such a " matrix-valued function on spacetime" represents a gauge 
transformation, i.e., an automorphism of the trivial principal bundle with 
spacetime as base and SU(2) as structure group. The curvature two-form 
F = dA + A A A, known as the Yang-Mills field strength, is subject to an 
adjoint transformation Fh> Ad(g~l)F under a gauge automorphism, and 
satisfies the Bianchi identity DF + A A F — 0 (the "homogeneous Yang-Mills 
equation"). The whole set of equations is conformally invariant—which in 
physics corresponds to the masslessness of the associated spin 1 (vector) 
particles. The coupling of the Yang-Mills field to its sources—the spin 1/2 
particles—is achieved by replacing derivatives by covariant derivatives in the 
Dirac equations and noting that the covariant differential of the Hodge-dual of 
F is the fermionic current (this can be derived from a variational principle, just 
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like in electrodynamics). This brief description touches only the classical 
(nonquantum) aspects of the Yang-Mills theory since these are the only aspects 
treated in Bleecker's book. The Yang-Mills paper also deals with quantization, 
which we shall not discuss here. 

It was only natural that the Yang-Mills theory should be amplified and 
extended to general Lie groups [Utiyama, 1956], [Mayer, 1956, 1959], and that 
the idea should also be applied to general relativity as a gauge theory of the 
Lorentz group (Utiyama, loc. cit. [Kibble, 1961], [Thirring, I960]). The dis­
covery in the late 1950s of the spin 1 resonances p and co, which were 
considered candidates for Yang-Mills particles (e.g., [Sakurai, 1961], where a 
gauge theory of strong interactions is discussed), which ultimately led to the 
introduction in 1961 of SU(3) as the group for strong interactions (known as 
the eightfold way, or flavor-££/(3)) by [Gell-Mann and Ne'eman, 1964], as well 
as the intermediate-boson model for the weak interactions and attempts to 
unify weak and electromagnetic interactions ([Schwinger, 1957], [Mayer, 1958], 
[Bludman, 1958], [Salam and Ward, 1959], [Gell-Mann and Glashow, 1961]), led 
to renewed interest in nonabelian gauge theories. However, conformai invari­
ance required that the Yang-Mills fields should be massless, whereas the 
putative vector bosons of weak interactions, as well as the vector resonances in 
strong interactions all were massive. And no way was known at that time to 
give these particles mass. 

The situation changed drastically in 1964, when [Brout and Englert, 1964], 
[Higgs, 1964,1966] and [Kibble, 1967] discovered a symmetry-breaking mecha­
nism (described in §10.3 of Bleecker's book), which allowed some components 
of the Yang-Mills field to acquire a mass (more precisely, in perturbation 
theory, allowed the pole in the propagator of the Yang-Mills field to shift away 
from zero), without worsening the renormalizability properties of the corre­
sponding field theory. This led [Weinberg, 1967] and [Salam, 1968] to revive a 
unified model of weak and electromagnetic interactions, based on the gauge 
group 5(7(2) X (7(1) and previously proposed by [Glashow, 1961] and [Salam 
and Ward, 1961] which is now known as the standard model and was 
sanctioned by the Nobel prize awards to Glashow, Salam, and Weinberg in 
1979. Since about 1970 the development of gauge theories was so rapid, and 
the literature so vast, that it cannot be adequately covered here. The only 
important point I want to mention was the proof of renormalizability of the 
theory (important for any quantum theory which aspires to describe reality) by 
't Hooft and Veltman and the discovery of topologically nontrivial solutions 
(instantons and monopoles) by ['t Hooft, 1973], [Polyakov, 1974], and [Belavin 
et al., 1975], which led to the fruitful intervention of the mathematicians and to 
nontrivial mathematical results (cf. Atiyah-Hitchin-Singer, 1978], and the re­
views by Atiyah and Jaffe at the Helsinki Mathematical Congress, [Atiyah, 
1979], [Jaffe, 1979] for further references). 

To end this rather incomplete and biased history of the subject-1 would like 
to apologize here to anyone not given due credit, or whose work has not been 
quoted—(for a more complete and different perspective, cf. [Yang, 1979]) let 
me note that the idea to use fiber bundles and connections in gauge theories 
appeared in the 1960s ([Lubkin, 1963], [Mayer, 1965], [Hermann, 1967]), but 
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was not accepted till about 1973 ([Trautman, 1971, 1973], [Mayer, 1973, 1975, 
1977], [Wu-Yang, 1975,1976]). It is interesting to note that the adoption of this 
language was hampered by the different meaning of the word "trivial" in 
mathematics and in physics: whenever we asked our mathematical colleagues 
whether fiber bundles could help us in understanding gauge theories we were 
told that our bundles are "trivial"—reason enough not to pursue this subject 
for a while. Only after Wu and Yang showed that the Bohm-Aharonov effect, 
and the understanding of Dirac monopoles in electrodynamics leads to non-
trivial bundles, did the notion of fiber bundle make headway into mathemati­
cal physics. It became particularly popular after the discovery of instantons, 
and of the results on instanton counting and the construction of instanton 
solutions by means of algebraic geometry methods [Atiyah-Hitchin-Singer, 
1978], [Atiyah, 1979], [Atiyah, Drinfel 'd, et. al., 1979], [Bourguignon, et. al., 
1979], to quote just a few representative mathematical papers. 

In order to understand the role gauge theories play in modern physics it is 
necessary to have a rudimentary understanding of how most theoretical 
physicists view the structure of matter at this point in time. The description is 
necessarily oversimplified, to fit into a mathematical framework, and no proofs 
exist that it is correct, but a view of this kind is currently accepted by a large 
fraction of the physics community. The fundamental building blocks of matter 
(at this point in history, since these concepts evolve with time) are the 
fundamental fermions: lep tons and quarks. The lep tons are directly observable 
(presently known are the electron and its neutrino, the muon and its neutrino, 
and the tau and its putative neutrino; in all three "flavors" or families, which 
behave similarly under weak and electromagnetic interactions and differ only 
in their masses). The quarks (which also come in three families (w, d\ (s, c), 
(f, b\ standing respectively for: up, down, strange, charmed, top, bottom) are 
assumed to have fractional electric charges ( + 2 / 3 , - 1 / 3 electron charges) and 
are assumed to be unobservable. Each quark comes in three "colors", and the 
only physically observable states are supposed to be colorless. This is described 
by saying that the quarks are invariant under an SU(3) "color" group, and 
their interactions are mediated by an eight-component gauge field—gluons— 
which is also unobservable, since it carries color. Observable objects are 
formed either of quark-antiquark pairs (e.g. the positive pion is composed of 
the up-quark and the down-antiquark) or of a colorless superposition of three 
quarks (e.g., the proton consists of two «-quarks and a d-quark, all in different 
color states) held together by the exchange of gluons. The leptons are capable 
only of weak and electromagnetic interactions. The weak interaction is thought 
to be mediated by the exchange of particles of the weak gauge fields: the 
charged W—the discovery of which was announced in January of 1983—and 
the yet to be confirmed neutral Z, particles which are assumed to acquire 
masses through the Higgs mechanism. The only gauge field which remains 
massless is the photon A, responsible for electromagnetism. In addition to 
interacting weakly and electromagnetically (by the exchange of these same 
particles) the quarks also interact strongly (by exchange of gluons). The 
unobservability of quarks and gluons, known as confinement, is believed to be 
an intrinsic feature of the unbroken gauge theory of color SU(3). 
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Even bolder attempts at "grand unification" are popular in physics these 
days. Here it is assumed that the original theory is based on a principal bundle 
with a larger structure group, e.g., SU(5) or SO(\Q\ and that the quarks and 
leptons are described by a section of an associated vector bundle with 
five-dimensional (respectively, real ten-dimensional) fiber. Symmetry breaking 
then leads to the structure group U(\) X SU(2) X S(7(3) of the electroweak + 
color gauge model, which ultimately breaks down to the (electromagnetic 
U(\)) X (color SU(3)) gauge bundle. Although the model is far from being a 
theory, it is held that it contains the germ of a future theory. Mathematically, 
such a theory consists of a principal bundle over spacetime manifold (suitably 
compactified by admitting only classical solutions which fall off at infinity to 
make certain "energy" integrals finite) and various associated bundles, the 
sections of which describe the various particles. The interactions are mediated 
by connections, and these in turn are determined, at least at the classical level, 
which can be described in usual mathematical terms, by the critical points of 
certain "action" functional-four-forms integrated over the spacetime mani­
fold, and constructed out of the curvature and its Hodge dual. This is, in a 
nutshell, the classical picture underlying any attempt to quantize such a theory. 
I will not attempt to describe quantum gauge theories, both because these are 
not discussed in Bleecker's book, and because the mathematical description is 
much more complex (cf., e.g., the reviewer's lectures, [Mayer, 1981], and the 
book by [Faddeev-Slavnov, 1980], for a description of quantization problems). 

This brings us to the contents of the book under review, Bleecker has 
successfully limited his attention to the fundamental geometric aspects of 
classical gauge theory, and has managed to condense into 180 pages a 
substantial amount of information, without sacrificing the pedagogical aspects 
of the subject. Most proofs and calculations are carried out in detail, and thus 
the book should present only minor difficulties even to a graduate student in 
physics, who is willing to follow every word, and do every calculation. 
However, some previous intuition on differential forms, Lie algebras, and 
calculus of variations will make the reading much more enjoyable. 

Chapter 0, Preliminaries, is an extremely useful summary of the necessary 
background in multilinear algebra, differential forms, tensors, Lie algebras, 
and Lie groups. The basic definitions of principal fiber bundles and connec­
tions can be found in Chapter 1. Chapter 2 is devoted to Lie-algebra valued 
differential forms and the concept of curvature, and gives enough details so 
that an inexperienced reader can follow the reasoning easily. Chapter 3 
discusses particle fields, not as sections of associated vector bundles, but via 
the equivalent description as equivariant maps from teh principal bundle to 
vector spaces carrying representations of the structure group. §3.2 contains a 
discussion of the automorphisms of the principal bundle on which a gauge 
theory is based and gauge transformations are defined as vertical bundle 
automorphisms. The reader is warned about the variations in terminology, 
particularly, that used in the physics literature. §3.3 deals elegantly, if suc-
cintly, with the variational principles underlying classical gauge theories, and 
the concept of invariant Lagrangian. The physicist-reader will find some 
motivations for the definitions introduced here and in the sequel lacking, but if 
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he is willing to provide his own motivations, will be well rewarded by a deeper 
understanding of the mathematics. 

Chapter 4 is devoted to the principle of least action and Lagrange's 
equations for particle fields, making use of Hodge duality on vector bundles 
with connections. The author cleverly uses the metric induced on horizontal 
vectors by the base space metric and the metric of the vector space in which 
the particle fields take their values, in order to set up this duality and to 
introduce the notion of covariant codifferential. This leads to a particularly 
streamlined discussion of variational principles (maybe too streamlined for the 
tastes of traditionally educated theoretical physicists, who feel uncomfortable 
without a plethora of indices and many integrations by parts). The same 
remark applies to Chapter 5, which deals with the Yang-Mills current (the 
source term of the inhomogeneous Yang-Mills equation which is written as the 
covariant codifferential of the Hodge-dual of the curvature equated to the 
current). After some work on specific examples, the physicist will convince 
himself that this is indeed the particle current, and that only the total current 
consisting of the Yang-Mills current and the "self-current" of the connection 
(i.e., the term proportional to A A F) is conserved. 

Chapter 6 deals with the Dirac field describing the electrons and other 
fermions. The treatment contains some pedagogical innovations. It should be 
noted that §6.2 contains the only annoying misspelling in the book: Levi-Civita 
is misspelled as Levi-Cevita (this has been corrected in Chapter 8 and the 
Index, but survived in the Table of Contents, a surprising fact in this age of 
electronic spelling-checking). Chapter 7 discusses interactions between particles 
and gauge fields in terms of "bundle splicing" (fibered products). The for­
malism is illustrated by a derivation of the Dirac-Maxwell, and Dirac-Yang-
Mills system (for the SU(2) theory). 

In preparation for general-relativistic extensions, Chapter 8 is devoted to a 
quick review of tensor analysis on a (pseudo)-Riemannian manifold. The 
unification of gauge fields and gravitation is discussed in Chapter 9. After an 
elegant coordinate-free preparation the author dicusses nonabelian generaliza­
tions of the Kaluza-Klein theory (in which it was unsuccessfully attempted to 
unify electromagnetism and gravity on a five-dimensional manifold with 
compact fifth dimension-isomorphic to the electromagnetic gauge group U(\)). 
The derivation of the Einstein-Yang-Mills equations for the nonabelian 
Kaluza-Klein model proposed by the author is based on an action principle 
where the action density is the scalar curvature of the bundle metric. It should 
be noted that models of the Kaluza-Klein type, as well as other gauge theories 
with higher-dimensional base spaces leading to symmetry breaking via "dimen­
sional reduction" have been much discussed in the literature in the years since 
the book was written (for additional references, cf., e.g., [Mayer, 1979, 1981]). 
The final chapter is devoted to various additional topics, such as the motion of 
particles in gauge potentials, Utiyama's theorem (stating that the action 
density of a gauge-invariant theory must be an Ad-invariant function of the 
curvature), a geometric description of the "Higgs mechanism", and a brief 
introduction to characteristic classes, monopoles and instantons. 
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The author has not set as his goal to cover all the latest development in 
gauge theory, particularly those which cannot yet be written in terms of 
rigorous mathematics (such as quantization, Feynman path integration, the 
Feynman-DeWitt-Faddeev-Popov trick), or those that require a deeper under­
standing of the index theorem (counting and construction of instantons). 
Those areas which are covered in the book form a useful basis for further 
studies. The Hst of references is by no means complete, and should be viewed 
more as a guide to further reading. The interested reader might well want to 
consult some of the review articles listed at the end of this review, for more 
complete references. The index of notations and the subject index are helpful 
in finding one's way through this tightly written text. 

In all, Bleecker has succeeded in presenting a difficult subject succinctly and 
elegantly. Physicists will fault him for not providing enough motivation 
(mathematics texts seldom do) and mathematicians should be warned that the 
physics presented is sometimes oversimplified, without reference to the remain­
ing tremendous difficulties. Nevertheless, both physicists and mathematicians 
will find a lot of useful material assembled in this text, which is a valuable 
supplement to the review literature written by physicsts. The author, the series 
editors, and the publisher should be congratulated for producing in a relatively 
short time a nicely typeset text with few misprints (excepting the misspelling 
mentioned above). It should be hoped that the new series which this book 
inaugurates will continue helping bridge the gap between mathematics and the 
physical sciences. 

I would like to thank Professors Meyer Jerison and Robert Reilly for 
pointing out some errors in the first draft of this review and for suggesting 
some improvements. Any surviving errors or inaccuracies, particularly as 
regards the history of the subject, are my sole responsibility. 
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