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THE SULLIVAN CONJECTURE 

BY HAYNES MILLER1 

THEOREM 0. Let G be a locally finite group with classifying space BG 
and let X be a connected finite dimensional CW complex. Then the space of 
pointed maps from BG to X is weakly contractible: Wi (map+(BG,X)) = 0 for 
all i > 0. In particular, every map from BG to X is null-homotopic. 

A group is locally finite if it is a direct limit of finite groups. When G 
is of order 2, this theorem represents an affirmative resolution of part of a 
conjecture of Dennis Sullivan [11]. In this announcement I will sketch a proof 
of this theorem; details will appear in due course. 

Theorem 0 is a straightforward consequence of the following three results. 

THEOREM 1. If X is a connected CW complex of finite category and G is 
a torsion group, then every map f : BG —• X is trivial in 7Ti. 

THEOREM 2. IfX is a nilpotent space such thatH*(X;Fp) is bounded—that 
is, Hi(X;Fp) = 0 for all large i—then map*(£Zp,X) is weakly contractible. 

THEOREM 3. Let X be a nilpotent space and G a locally finite group. If 
map*(£Zp,X) is weakly contractible for every prime p occurring as the order 
of an element ofG, then map*(.BG,X) is weakly contractible. 

Theorem 1 is an exercise in K-theory and covering spaces. For the remain­
ing theorems, it is convenient to work simplicially; the topological results 
follow from standard comparison theorems. So "space" will always mean 
"simplicial set", usually assumed fibrant. 

PROOF OF THEOREM 2. The crux is the following theorem, which distills 
results of Bousfield and Kan [5], and Dror, Dwyer, and Kan [7]. 

THEOREM 2.1. Let W be a connected space such tfca*33T*(W;Z[|]) = 0, and 
let X be nilpotent. Then the natural map X -+ FpooX to the Bousfield-Kan 
Fp-completion induces a weak equivalence 

map,(W,X) -• map,(W,FpooX). 
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Let C be the category [4] of unstable right module coalgebras without unit 
over the modp Steenrod algebra A Then [4 and 5] show that 

map.O^FpooX)-* 

provided that 

Extg(F,(E*W), H*(X)) = 0 for all* > s > 0. 

Here Ext^(Hr*(EtWr),—) is the 5th cosimplicially derived functor of 
Homc(Hr,(E*H0> - ) • When t = 0,_only Extgfff.(EnV), - ) is defined, and it is 
only a pointed set. When t > 0, iJ*(E*W) is an Abelian cogroup in C and so 
Ext^(BF*(EtWr), —) is defined for all s > 0 and is an Fp-vector space. Theorem 
2 follows from (2.1) and 

THEOREM 2.2. IfCeC is bounded then 

ExtXH+Ç&BZp),C) = 0 forallt>s>0. 

The case t = 0 of this theorem follows from the fact that every element 
of H*(BZp) is the image of a positive dimensional Steenrod operation. For 
the remaining cases we invoke a composite functor spectral sequence. Let N 
be any object of the category U of unstable right A-modules. Then EiV G C, 
with trivial diagonal. The module PC = ker( A : C —• C ® C) of primitives 
is a suspension in Zi, and Homc(EiV,C) s Hom^(iV,E~1PC). We obtain a 
convergent spectral sequence 

E x t j ^ E - ^ ' P t C ) ) =» Ext£+t(EiV,C). 

Theorem 2.2 therefore follows from the next two results. 

THEOREM 2.3. If C is a connected bounded Fp-coalgebra then FPPfâ) is 
bounded for eacht. 

THEOREM 2.4. IfMeU is bounded then Ext^(F*(En£Zp), M) = 0 for 
all s, n > 0. 

PROOF OF THEOREM 2.3. Since any connected coalgebra is a direct 
limit of finite coalgebras, we may prove (2.3) by establishing suitable results 
for left derived functors of the functor assigning to a connected commutative 
Fp-algebra -R (henceforth, "algebra") its module of indécomposables QR. As 
a first approximation we have the following theorem of André [1]: 

THEOREM 2.3.1. If QR is finite, then LtQ(R) is finite for each t. 

Andre's proof does not seem to yield a bound on the top nonzero dimension, 
however, so sharper methods are needed to establish (2.3) in general. Quillen 
[10] tells us to think of L*Q(R) as the "homology" of the algebra R) more 
generally, any simplicial algebra X admits a surjective weak equivalence X —• 
X from a cofibrant object [10], and n*(QX) is the "homology" of X. Quillen 
constructs an "Adams spectral sequence", passing from 7r*(QX) to 7r*(X), 
and Bousfield [3] carries out the coalgebra analogue. We construct a "reverse 



THE SULLIVAN CONJECTURE 77 

Adams spectral sequence". This spectral sequence is uninteresting when ap­
plied to a constant simplicial algebra R. However, "homology commutes with 
suspension", and in this setting, the Eilenberg-Mac Lane functor W is suspen­
sion [9]. Let D be the algebra of higher divided powers, studied at the prime 2 
by Dwyer [8] and in general by Bousfield in earlier but unpublished work [2]. 
D acts naturally on QTT*(X) for any simplicial algebra X—in particular, on 
the vector space of indécomposables in TT*(WR) = Tor^(Fp,Fp)—and satisfies 
a certain "unstable" condition. Let Untorf(Fp, —) denote the derived functors 
of Fp®£>—on the category of unstable D-modules. The spectral sequence then 
takes the following form. 

T H E O R E M 2.3.2. There is a natural spectral sequence 

E2
Sit = Untor£ t(Fp,Q Tor?(FP,FP)) =» L.+ t_iQ(fl). 

The boundedness result (2.3) follows easily, as does (2.3.1). One also obtains 
as a corollary a case of an unpublished result of Quillen, namely, that 

Q Tor£(Fp ,Fp)5Ln-iQ(fl) for 1 < n < 2 p - 1. 

P R O O F O F T H E O R E M 2.4. An easy spectral sequence argument shows 
that we may assume n = 0. Let G(n), xn G G(ri)n, corepresent the functor 

from U to sets given by M H Mn : that is, HomA(G(n), M ) ^ M n by ƒ •-• 
f(xn). G{n) is evidently projective in I/. We have maps G(2n) —• G(2pn) 
by x2n *-+ x2pnP

n (where Pn = Sq2n if p = 2). Write G2n for limG(2pin). 

There are natural maps Gin -+ H*(BZP). Theorem 2.4 for n — 0 is a direct 
consequence of the next theorem, due when p = 2 to Carlsson [6]. 

T H E O R E M 2.4.1. 0 ^ G2n - • H*{BZP) is a split epimorphism. 

PROOF OF THEOREM 3. Let G be a group, and consider a subcategory 
0 of 0{G), the category of transitive G-sets and equivariant maps, satisfying 

0 is a full subcategory containing an orbit To 

(*) with a point xo whose isotropy subgroup fixes 

every orbit in 0. 

Examples of interest include: (i) Let H be any subgroup of G and OH the 
category of all those orbits whose isotropy groups are intersections of con­
jugates of H; (ii) Let p be a prime and 0P(G) the category of all orbits whose 
isotropy groups are p-groups. Let T : 0 -> (G-sets) be the inclusion functor. 
Let hocolim be the holim of [5]. 

THEOREM 3.1. Let 0 satisfy (*) and let E be a principal Gspace. There 
is a natural homotopy equivalence 

hocolim E x G T~EIG. 
o 
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In particular, if E is contractible then EXQT C* BH where H is an isotropy 
group of T. We then take the liberty of writing (3.1) as 

hocolim BH~BG. 
o 

The resulting spectral sequence [5], for an additive homology theory h*, 

L*colim/**(£#) =» h+(BG), 

would appear to be a useful tool in the study of group cohomology, unifying 
several well-known constructions. 

Theorem 3 results from (3.1), the arithmetic square of [7], and the following 
consequence of the Sylow theorem. 

THEOREM 3.2. Let G(p) be a p-Sylow subgroup of the finite group G. Then 
if*(ö;Z(p)) = 0; where 0 is (the nerve of) either 0P(G) or OG(P)-
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