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The book begins with basic facts about Banach spaces, convolution struc­
tures, approximate identities and then carefully prepares three of the most 
useful tools of modern analysis—the Fourier transform, harmonic functions, 
and the interpolation of operators. The penultimate chapter is an introduction 
to the maximal function and an application of these ideas to ergodic theory (in 
the style of Collar's famous paper [2]). The final chapter begins with conjugate 
functions, Riesz transforms, and then goes on to simpler sorts of Calderón— 
Zygmund kernels (they satisfy the Dini condition). 

This book grew out of a series of lectures Sadosky gave at the Universidad 
Central de Venezuela and the presentation of many of the topics shows the 
influence of the texts mentioned above. Unfortunately for the student, the 
material is given only a formal motivation (study A in order to learn A), and 
there are no exercises. 

One final remark. Both books are produced from camera-ready copy. Even 
though the manuscripts were very carefully prepared on high-quality type­
writers, we should think that for the price, the reader could expect the much 
more readable and attractive typesetting. 
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1. Levi problem. Many interesting results in complex analysis are concerned 
with the existence of analytic functions with prescribed properties. Most of 
these apply to "pseudoconvex" domains: this is a holomorphically invariant 
geometric criterion generalizing convexity. One such result is the solution of 
the so-called Levi problem: Every pseudoconvex domain Q, C Cn is a domain of 
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holomorphy (i.e. there exists an analytic function on 0 which cannot be 
continued over any point/? E 80). 

All domains 0 C C1 are pseudoconvex (trivially). Further, each domain 
0 C C1 is a domain of holomorphy. (This is seen because for each/? E 80 the 
function (z — p)~x has a natural barrier at p. By an application of the Baire 
Category Theorem, there is a single function/(z) on O with a barrier at each 
p E 80.) 

The Levi problem becomes nontrivial for domains ficC" when n> 2. A 
little experimentation will show that there is no "natural" singularity generaliz­
ing (z — p)~l to 2 or more variables. In fact there can be no singularity at all at 
any "inner" boundary point of the domain 

0 = {(z,w) E C 2 : 1 <max( | z | , | w | ) < 2 } . 

This is because each function on 0 may be continued analytically to 0 = 
{(z, w) E C2: max{| z | , | w |} < 2}. (Consider the Laurent expansion in z and 
w of a function analytic on 0.) 

A widely used method for existence theorems is to proceed via the operator 

8 = 2 "SF"̂ /-

A function ƒ is analytic if and only if 8ƒ = 0, since _this system contains the 
Cauchy-Riemann equations in each variable. The "8-method" might be de­
scribed loosely as follows. First, one must find a norm || Il 0 on functions and 
a norm 11 || j on (0, l)-forms such that for each (0, l)-form \i with 8/x = 0, there 
is a function h satisfying dh = ju and 

(1) ll/illo^CII/ill,. 

For any function ƒ on 0, the new function F = f— g is analytic whenever 
9/ — 8g. Note that if we choose ƒ to be almost analytic (i.e. 8/ is small), then 
the correction term g may be taken to be small by (1). The second part of the 
8-method, then, is to arrange that the function/(z) has the desired properties 
and that these are not lost after the addition of a correction. 

This method yields, among many other existence theorems, a solution of the 
Levi problem. Thus it turns out that the study of domains of holomorphy 
(trivial for n — 1) leads to the interplay of the geometric property of pseudo-
convexity and the analytic nature of 8. 

2. Krantz's book. Analytic continuation and the Levi problem form the core 
around which much of Krantz's book is organized. The first seven chapters 
cover the basic material on analytic functions. This includes thorough treat­
ments of convexity and subharmonicity and a solution of 8 via Hormander's 
weighted L2-estimates. The general framework for all of this is contained in 
Cartan's Theorems A and B, which are discussed at length; but the proof, 
being sheaf-theoretic and somewhat in a different direction, is omitted. A 
drawback is that Chapter 1 jumps immediately into some integral formulas 
which are rather advanced and specialized; some of this might be skipped 
upon a first reading. 
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The last three chapters cover special topics: boundary values, integral 
formulas, and holomorphic mappings, which are discussed below. 

Krantz writes from the point of view of the analyst: much attention is given 
to precise smoothness and integrability properties of functions, and many 
techniques from real analysis are introduced and used. In fact, the real variable 
techniques are emphasized, in view of their greater generality. The Introduc­
tion reveals the missionary spirit of the book. It is designed to take the student 
familiar with analytic functions of a single variable and lure him into the 
subject of several variables. It is written in a chatty, informal style and is quick 
to answer the " trivial" questions a student might ask. 

One of the remarkable features of this book is that it contains a large 
number of Exercises and Problems. In fact this seems to be the first treatment 
of the subject to have a significant number of problems at all. This is 
particularly important since the subject abounds with abstract theorems and 
has relatively few concrete (and nontrivial) worked examples. Perhaps this is 
related to the fact that there are rather few connections with applied mathe­
matics. Several of Krantz's problems are difficult; the student will probably 
have to look for hints in the references cited. 

To be sure, this text is no replacement for the classic book of Hörmander, 
which is unsurpassed for its power and elegance. But Hörmander demands 
considerable sophistication from his reader, and the student needs a book like 
Krantz's, which is written as a text with explanations and exercises. 

3. Boundary values. Many properties of analytic functions are really just 
properties of harmonic (or subharmonic) functions. If u is a bounded harmonic 
function on the unit ball B" = {| z |2 < 1} C Cn

9 then it is the Poisson integral 
of a function w* G L°°(3B"). Further, 

lim utt) = w*(z) 

holds for almost every z E 3B", with the limit being taken through a truncated 
cone Cz C B" with its apex at_z G 8BW. 

But a function satisfying 3ƒ = 0 in fact satisfies n independent equations 
and is thus the solution of an over-determined system of differential equations. 
In particular ƒ is also harmonic on smaller subsets of Bw and boundary limits 
will exist on sets with much finer structure. For instance, if a = ( Û 1 V . . 9an) G 
3BW, then F(S) = f(Çal9.. .^an) is analytic and bounded on the unit disk 
{| J |< 1}. Thus there are nontangential boundary limits at almost every point 
of the circle {(ei0al9...9e

i6an)9 0 < 6 < 2TT} C 3BM. Similar results hold for 
more general curves and in more general domains, and the boundedness 
condition may be relaxed. Further, it has been shown that the nontangential 
approach region Cz may be replaced by a larger "admissible" region Az9 which 
is partially tangential to the boundary. Although many generalizations have 
been obtained, there remains the question of just how small the set 

z E SB": lim f(rz) does not exist} 

really is. 
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Another way that the overdetermined nature of the equation 3ƒ = 0 ex­
presses itself when n>2 is that there is the induced boundary operator db on 
3BW. For instance, at the point (1,0,...,0) G 3B", db = 21=2(d/dzj)dzj. 
Boundary values and db are related by the following result. 

THEOREM. A function/* G L°°(3BW_) is the nontangential boundary value of an 
analytic function on Bn if and only ifàbf* = 0. 

Thus whether or not/* is the boundary value of a holomorphic function is a 
local condition if n >• 2; it is not local if n — 1. The operator db on 3B2 is (after 
a change of coordinates) the famous " unsolvable" operator of H. Lewy; the 
fact that dbu = h is not locally solvable on 3B2 is closely related to the 
Theorem above. 

By now we have probably given the misleading impression that boundary 
values are thoroughly good and that the only problem is to find proofs of these 
good properties. Let us give an example of the opposite situation. For 
functions of one variable, a special role is played by the inner functions, i.e. the 
bounded functions on the unit disk for which | f*(ei6)\= 1 for a.e. 0. The 
following heuristic argument shows that an inner function ƒ on B", n > 2, 
should be constant. If | ƒ* |= 1, then/* = 1//*, and so 

3*(7r) = 3ft(l//*) = - 7 ^ = 0. 
(ƒ*) 

It follows that dbRe/* = db( ƒ* + ƒ*) = 0 and so Re/* is the boundary value 
of an analytic function, and is thus constant. There are also completely 
different but equally convincing heuristic arguments to show that inner func­
tions are constant. Thus it was quite a surprise when it was recently shown1 

that there do exist nonconstant inner functions: the boundary behavior can be 
much more complicated than was previously thought. 

4. Cauchy integral formula. Let J) C C1 be a domain with reasonable 
boundary. For any function g G Cl(D) we have the Cauchy-Green formula 

for all z G D. If we abbreviate this as 

(3) g(z) = Kl(g,D) + K2(dg,D), 

it is apparent that 
(a) the forms appearing in Kx and K2 are independent of Z>, 
(b) the kernel Kx is holomorphic in z for z ¥= f, 
(b') K2 solves 3, i.e. (d/dz)K2(h, D) = h holds on D. 
Because of these properties, a substantial portion of the properties of 

holomorphic functions of a single variable may be obtained as relatively simple 
consequences of (2). 

'This result was discovered by A. B. Aleksandrov [Mat. Sb. 118(160) (1982), 147-163 (in 
Russian)] and independently by E. Low [Invent; Math. 67 (1982), 223-229] using a construction of 
Hakim and Sibony [Invent. Math. 67 (1982), 213-222]. 
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There is a large literature concerned with obtaining generalizations of (3) to 
various domains in Cn. These have been used to obtain deep and precise 
results, such as the uniform estimates for the solution of 3. The kernels 
involved give new and interesting classes of singular integral operators. Also 
there are relations between some of these operators and the Bergman and 
Szegö projections. Despite this progress, however, the construction of these 
kernels remains rather difficult, and it has not been possible to find a single 
formula with the properties (a), (b) and (b') which make (2) so powerful. 

5. Nonexistent Riemann mapping theorem. It is an old observation that the 
ball B2 = (| zx |2 4- | z2 |

2 < 1} is not biholomorphically equivalent to the bi-
disk A2 = (max | zx | , | z2 |< 1}; thus there is no Riemann mapping theorem 
for domains in Cn when n > 2. In the case of B2 and A2, the nonexistence of a 
mapping may be explained on the basis that 3B2 is strongly pseudoconvex 
while the boundary surfaces 3A X A and A X 3A of 3(A2) are "flat". Yet there 
are still boundary obstructions to the existence of a mapping between hy-
persurfaces S, and S2 even if the surfaces are both strongly pseudoconvex or 
both Levi flat. In the strongly pseudoconvex case there are even an infinite 
number of biholomorphic invariants at each point p G S = 3£2, each one 
depending on a finite number of derivatives of 30 at p. Because of these 
boundary invariants it is quite " unlikely" that any two strongly pseudoconvex 
domains Q{ and B2

 a r e biholomorphically equivalent. On the other hand, the 
invariants are sufficiently difficult to compute that it is essentially impossible 
to decide the equivalence of Qx and Q2

 o n t n e basis of them. 
Implicit in our discussion of obstructions to mappings in terms of boundary 

invariants is the regularity theorem: A biholomorphism ƒ: Qx -> Q2 between 
smoothly bounded strongly pseudoconvex bounded domains extends smoothly to 
Q,. This result was first proved by C. Fefferman, but by now it has been 
greatly generalized, and many new proofs have been given. 

In the same vein of nonexistence, one could ask, given a domain Q, (ç Cn, 
whether Aut(S2) = {biholomorphisms ƒ: Œ -> £2} contains any elements other 
than the identity? In view of the local invariants, one expects the existence of 
automorphisms only for special fi. There is also the following Compactness 
Theorem: Ifti is strongly pseudoconvex, then Aut(0) is compact unless £2 « B". 

6. Conclusion. Krantz's method of covering the material of §§3, 4 and 5 is 
not to give comprehensive treatises but to present selected theorems and 
highlights, serving as introductions to these currently active areas of research. 
The treatment of boundary values is given from the point of view of harmonic 
analysis. This follows the philosophy of E. Stein and his collaborators and uses 
the techniques of maximal functions and coverings by "balls" whose shapes 
are adapted to the geometry of the boundary. Holomorphic mappings are 
discussed geometrically. The main results are the Compactness and Regularity 
Theorems stated in §5. The biholomorphic inequivalence of Bn and A" is a 
recurrent theme. Since Krantz did not research his historical remarks very 
thoroughly, we might point out the old result of K. Stein and H. Rischel that 
there is no proper correspondence [more general than a proper mapping] 
between A" and B". 
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Integral formulas are difficult to discuss in just one chapter. For one thing, 
there are many different formulas; for another, their construction and use has 
remained a rather technical enterprise. Krantz limits himself to constructing 
and estimating the "Leray-Stokes" formula of Henkin in the case n — 2, a 
choice which strikes a good compromise between generality and technicality. 

As a text, this book should be excellent for a second course on complex 
analysis. It covers many of the basic results and connects them up with 
harmonic analysis and P.D.E.; and the final three chapters provide an in­
troduction to more specialized material. 
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" The original and basic concept of functional analysis is that of an operator. 
Just as an analytic function has its complete domain of definition, so an 
operator has a complete set of spaces on which it can be examined." This 
maxim is from the 1966 survey article of S. G. Krein and Yu. I. Petunin on 
interpolation spaces [5], who also refer to " the victory of the operators over the 
spaces." For a nice example of this phenomenon, consider some recent results 
of Marshall, Strauss, and Wainger [6] concerning the nonlinear Klein-Gordon 
equation 

(NLKG) vtt - At; + v + A | v \av = 0 

and its linearization at v = 0, 

(KG) utt - AM + u = 0. 

Here A is the Laplace operator on Rn, and one assumes a > 0, X > 0. Given a 
function ƒ in L2(R"), there is a unique (weak) solution u{x, t) to (KG) with 
initial data u(x, 0) = 0 and ut(x, 0) = f(x). Let Tt : ƒ -> u( •, t) be the operator 
which takes initial velocity ƒ into position u( •, t) at time /. The problem is to 
construct a finite energy solution to (NLKG) which is asymptotic in the energy 
norm as t -> -oo to Tt ƒ. As was shown previously by Strauss, this can be 
reduced to the problem of obtaining certain bounds (in terms of t) for the 
norm of the linear operator Tt from Lp(Rn) to L*(R"), with \/p + \/q = 1. 
This is carried out in [6] by using results of Fefferman and Stein about the 
operator (1 — A)", s G R, on the space BMO, together with the Stein interpo­
lation theorem applied to a holomorphic family of operators Tt

a (a e C) 
containing Tr The result is that the nonlinear scattering problem at t = -oo 
has a solution when the exponent a in (NLKG) and the space dimensionality n 
satisfy A/n < a < [A/(n — 1)]. In particular, the physically interesting case 
n — 3, a = 2 is included in this treatment. 


