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What is number theory good for? No one doubts that many branches of 
mathematics owe their existence to—or, at least, were strongly stimulated by 
—problems of the "real world", like those of physics, engineering, etc. 
Familiar examples are the calculus and the theory of differential equations 
needed in celestial mechanics; partial differential equations that are indis­
pensable in hydrodynamics and so on. But number theory? Often number 
theorists, when challenged by our first question (usually asked by nonmathe-
maticians) feel obligated to convince the questioner that number theory also 
can be useful. Sometimes its applications in problems of crystallography and, 
more recently, in cryptography are mentioned. Why it should be necessary to 
point out a " usefulness" in the commonly understood sense for number theory 
is something of a mystery to this reviewer. It appears quite certain that 
Diophantus, or Fermât, or Gauss studied this field of human knowledge 
because of its intrinsic interest and its pecuhar beauty—and they really did not 
care one way, or the other, whether their elegant theorems would, or would not 
have " useful" applications. 

Be that as it may, it turns out that like so many other branches of 
mathematics, developed by the "purest" of mathematicians, also number 



490 BOOK REVIEWS 

theory does have applications outside itself. In addition to cryptography, or to 
the numerous problems of physics concerned with lattices (crystallography is 
just one of them; the study of perfect gases is another one; see [2]), one may 
list the many applications of number theory to the theory of computers (see, 
e.g., [9, Vol. 2]), the generation of random numbers (see [15, or 4]), and many 
more. 

Two relatively recent publications, [23] edited by Zaremba and the present 
book by Hua and Wang, called attention to yet another great field of number 
theoretic application, namely numerical analysis. 

At present, the number theorist who feels compelled to justify to the world 
the love for his field by the latter's " usefulness" can proudly point to the need 
for sophisticated number theory in [23] and in Hua and Wang, but also in 
Knuth's Art of computer programming [9], numerous papers by Dieter (see, e.g., 
[23, pp. 287-317] and [5]), and many more. 

While Zaremba's collection of papers [23] discusses applications of number 
theory to numerical analysis understood in a rather broad sense, the book by 
Hua and Wang concentrates upon essentially one problem only, namely the 
numerical computation of multiple integrals. Indeed eight of its ten chapters 
are devoted to it, and only the last two chapters discuss other topics (interpola­
tion and differential and integral equations). Numerical integration is almost 
as old as integration itself. Some of the classical polynomial interpolation 
formulae are due to Newton. In fact, Newton himself (already in 1676; see, 
e.g., [10, p. 231]) used those formulae for the approximate computation of 
definite integrals. Better known and more accurate formulae for "mechanical 
quadrature", as numerical integration (especially in one variable) used to be 
called until quite recently (see, e.g., [10 and 16]), are those of Simpson, Weddle, 
Stirling, Bessel, Lagrange, and Gauss, among others. While originally devised 
only for simple integrals, they were soon used, by iteration, also for double 
integrals. Nevertheless, number theory played hardly any role in the most 
important problem related to these formulae, namely the estimation of the 
maximal error term; this was obtained by analytic methods. 

The main idea of the quadrature formulae is to replace an integral Saf(x) dx 
by a finite sum 2n=0an f(xn\ a = x0 < xx < • • • < xk = b, an independent of 
ƒ(*), in such a way that the size of the error term 

**( / ) = 
cb. k 

f f(x)dx- 2 a„f(x„) 
n = 0 

should be as small as possible, for any function ƒ(JC) of a given class (such as 
functions of bounded variation, continuous functions, twice differentiable 
functions, etc.). 

In many of the formulae, the points xn are obtained by simply subdividing 
the interval [a, b] into k equal parts. However, in Gauss' formula, normalized 
for the interval [-1, +1], the xn are the zeros of the Arth Legendre polynomial. 
Gauss showed that, for the same amount of computation (as measured, e.g., by 
the number and precision of the terms used) one can improve considerably the 
result by a judicious choice of the points of subdivision. 
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This remark may be considered as the starting point of many future 
developments. Indeed, the question arises: can we select the points where we 
compute the function to be integrated in such a way that the average of very 
few such functional values, perhaps with proper weights, should yield the value 
of the integral over a unit interval with a minimal error? And next, can this 
procedure be used in a Euclidean space of arbitrarily many dimensions? This 
second question is far from trivial. Indeed, any integral in one variable, 
faf(x) dx, can be normalized to an integral over the unit interval [0,1] by a 
simple linear change of the variable. This, however, is no longer the case even 
in two dimensions; not every simply closed curve, even if convex, can be 
mapped onto the unit square by similarity transformations and rigid motions. 
The problem is still more difficult in higher dimensions and, in particular, for 
nonconvex volumes. Even in these cases, however, the very definition of the 
Riemann integral suggests that if we average the value of a reasonably smooth 
function at sufficiently many points with a sufficiently regular distribution 
over a unit volume of fairly arbitrary shape, we ought to obtain a good 
approximation to the integral of that function over the given volume. 

With the advent of electronic computers it became possible to implement 
this approach. An element of randomness entered the choice of points, and 
that earned the method the name of Monte Carlo. The Monte Carlo method 
knew a number of successes, but soon also its limitations became apparent. It 
became clear once more that one could improve the result by a judicious choice 
of points. This was realized by Korobov (see [11,12 and 13]) and, indepen­
dently and almost simultaneously, by Hlawka [8] somewhat over 20 years ago. 
These events signalled the start of the thorough use of number theory in 
numerical analysis. Shortly afterwards, again independently, a similar method 
was used by Conroy (see [3]) in the evaluation of a multiple integral that occurs 
in physical chemistry. Today this method, originally called by Korobov the 
optimal coefficients method, is usually refered to as the good lattice points (g.l.p.) 
method. 

The leading ideas of the method are as follows: One attempts to find a good 
approximation to /J • • • Jof(x) à by a finite sum, as before. Here x = 
(xl9... ,xs) is a vector in ^-dimensional Euclidean space and dx = dxx • • • dxs. 
The accuracy of the procedure is much improved if one assumes that /(x) is 
periodic, of period one, in each of its s variables. This means that it possesses a 
multiple Fourier series /(x) = 2mC(m)e27r/(x"m), where m runs through all 
integral vectors in ^-dimensional space and ( x m ) = S ^ ^ m , is the inner 
product. Under these conditions we consider sums of the form n~l2n

r=x/(ra/w). 
Korobov and Hlawka have shown that it is possible to choose the vector 
a = a(«) in such a way that for all functions/(x) of a certain class, 

|/;.../>)-!|/(f-) 
Here C is an absolute constant (for the given class of functions) and a depends 
on the smoothness of those functions. The vector a — a(«) has to be chosen by 

<Cn-«(logny. 
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some (not uniquely determined) method, so that the diophantine equation 

(*) (a • m) = 0 (mod n ) 

should have no "small" solutions m = (m,,. . . ,m5). Specifically if we set 
mi — max(l,| mt\), one requires that 11 m 11 = I l ^ m , should exceed a certain 
lower bound for all solutions m of (*) (see, e.g., Lemma 3.9). Once we settle on 
a method for the selection of a as a function of «, we can, using the value of a, 
also compute /?. It is clear that by taking n successively larger we can reduce 
the error below any preassigned limit, but for each new w,a = a(«) has to be 
recomputed—and that is by far the most time-consuming part of the process. 
According to the method used to determine a, the authors speak of p-points, 
good points (g.p.) and good lattice points (g.l.p.). For the purpose of this review 
we shall largely ignore these distinctions. 

Although there exists a theorem to the effect that the measure of the set of 
good points is one, the effective construction of even a single one of them is 
not trivial (see Baker [1 and Schmidt 17,18]). Korobov, Zaremba [19,21], 
Halton [7] and others have suggested methods for the economical construction 
of g.l.p., but one of the most important contributions to this topic is due to the 
present authors (who, by the way, define g.l.p. in a way slightly different from 
their predecessors). 

Once this problem is solved, one has to extend the results (a) to functions 
that fail to be periodic with period 1, and (b) to volumes other than s-dimen-
sional cubes. At least three methods have been proposed to handle problem 
(a). The simplest is probably to set F(x) = j( f(x) + f (I — x)). Then F(Q) = 
F(l) and F(x) can be defined outside [0,1] by periodicity as a continuous 
function. It also is clear that fof(x) dx = JoF(x) dx, and the previous method 
applies to the last integral. The generalization to s variables is, of course, 
immediate. Other methods that have been proposed to overcome the lack of 
periodicity are changes of variables and the use of Bernoulli polynomials 
(besides the present book also see, e.g., [6]). As for (b), the solutions suggested 
are perhaps not entirely satisfactory. An obvious approach is the introduction 
of the characteristic function for the set S, x(x) — 1 if x ^ S> x(x) — 0 
otherwise. 

Then, if S C Gs (Gs = ^-dimensional unit cube) we may apply previous 
methods to F(\) — x(x)/(x) and integrate over Gs. Unfortunately, x(x) (hence 
F(x)) is far from being smooth; in fact, it is not even continuous and, in 
general, F(x) does not belong to the class of /(x). One may either smooth out 
F(x) or use other procedures. Here the concept of isotropic discrepancy (see 
[20]) plays an important role, but this cannot be discussed here. 

The book by Hua and Wang handles these and related problems with 
greatest care. Perhaps the most remarkable feature of the book is the large 
amount of algebraic number theory presented and used. Of the ten chapters, 
more than half (Chapters 1,2,3, most of 4, half of 5, all of 6) are devoted to 
basic number theory. 

The text starts with a thorough discussion of algebraic number fields and 
their units, followed by a study of certain symmetric functions. Next, the PV 
(Pisot-Vijayaraghavan) numbers are introduced (the algebraic integer a is a PV 
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number if a > 1, but for all its conjugates, | a(/) | < 1). The uniform distribution 
modulo one is carefully presented (but H. Weyl's name barely appears in a 
note at the end of Chapter 3). A relevant theorem of Vinogradov is proven and 
different types of discrepancies are defined and compared. Here the work of 
van der Corput, Hammersley, Halton, Hlawka, Zaremba, Niederreiter, and 
W. Schmidt is acknowledged, together with that of Korobov, the authors, 
Khintchine, and Bahvalov. 

Because of the great importance of the concept of the discrepancy of a set of 
points, we recall its definition. Let Pn(k) = (x[n)(k)9... ,x(

s
n)(k)\ 1 < k < n be 

a set of n points in the s-dimensional unit cube Gs, denote by y = (yl9...,ys) 
any fixed point of Gs and set | y \ — y ^ * * * ys. Let Nn(y) denote the number of 
points of Pn(k) that satisfy the inequalities 0 < x^n\k) < yt for 1 < / < s. 
Then 

sup >„(r) = D(n) 

is called the discrepancy of the set of points Pn(k). If we have an increasing 
sequence of integers ni9 then, we may compute D(nt) for each of these. If 
\imn_^(yoD(ni) = 0, the sequence P(k) = (xx(k)9.. ,,xs(k)\ / c = l , 2 , . . . , is 
said to be uniformly distributed in Gs. 

The text continues with the study of approximations by rationals and of the 
number of solutions of diophantine equations and systems. 

This theoretical preparation is used (at the end of Chapter 4) to compute the 
discrepancies of several sets of points that are either g.p. or g.l.p. Here the 
author's own contributions play a prominent role (use of PV numbers and of 
generalized Fibonacci numbers, defined by Fn = l/h=xFn_h for n> s, Fj, = 0 
fory = 0 , l , . . . , j - 2 , F 5 _ , = 1). 

Problems of uniform distribution are considered and functions of bounded 
variation in the sense of Hardy and Krause (already considered in this context 
by Zaremba [22]) are defined and studied. 

Let Pn(k) (1 < k < n) be any set of points with discrepancy D(n). Then, if 
/(x) is a function of bounded variation (henceforth always understood in the 
sense of Hardy and Krause) of total variation V(f)9 where f(x) is not 
necessarily periodic, it is shown that 

JGs " k=\ 

V(f)D(n). 

The proof of this fundamental inequality is far from trivial and is given in full 
detail. 

There are two requirements that the points Pn{k) have to satisfy in order to 
lead to useful quadrature formulae: (1) they have to have a low discrepancy 
(i.e., they should be distributed as regularly as possible); and (2) they should be 
easily computable. 

The authors list some 15 quadrature formulae, each with an upper bound of 
its error. Also, given any Pn(k) in Gs, the authors construct a function 
f(x) G Ca (a = q -\- \, i.e. /(x) has continuous derivatives up to order q and 
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the last, no longer differentiable derivative satisfies a Lipschitz condition of 
order X) for which 

>c(q9 \9s)n~a/s. 

This shows that, regardless of how well the points Pn(k) had been selected, 
there is a limit on the precision of these quadrature formulae, beyond which we 
cannot hope to improve them, at least as long as we impose upon the functions 
f(x) only smoothness, without periodicity. 

At this point, periodic functions are introduced and a norm II ƒa II is defined. 
If f(x)~2mC(m)e27ri(m x) and | C(m)\< C/||m||a, then/(x) is said to belong to 
the class E"(C). Two other classes of functions, Q"(C) and H"(C), are also 
defined. They satisfy the inclusion relations H?(C) C Qf(C2) C Es

a(2sC2), but 
we shall not define them here more precisely. For functions of these classes, 
more precise quadrature formulae can be obtained than for nonperiodic 
functions. Hence, there is interest in reducing nonperiodic functions to peri­
odic ones, and the previously mentioned three methods for this reduction are 
presented. Finally, the numerical integration of periodic functions is presented 
for each of the three classes defined and for selections of the Pn(k) asp, g.p., or 
g.l.p. By estimating lower bounds for the error terms, it is shown that often the 
upper bounds of the errors are of the right order of magnitude, so that in 
general (i.e., for particularly bad functions of their class), the error cannot be 
further improved. This leaves open the possibility (in fact, the likelihood) that 
for the great majority of the functions to be integrated, the error is much 
smaller than the conservative theoretical upper bound obtained. 

A full chapter (8th) presents numerical work. Specifically, g.p. and g.l.p. are 
computed by several methods, and the errors bounds to which they lead are 
compared to each other and to the actual errors in specific numerical examples. 
In this work the generalized Fibonacci sequence is found particularly useful. 
Also estimates for the number of operations and computing time are made and 
are related to the obtainable accuracies. Frequent references are made to 
several papers published in Zaremba's collection [23], including at least one 
lengthy verbatim quotation. Several numerical tables in the appendix are 
explained and discussed. Also several conjectures are formulated to the effect 
that the results obtained are probably better than what we can actually prove 
by our present estimates of the worst case error terms. Finally, as already 
mentioned, the last two chapters discuss interpolation for previously defined 
classes of functions and the numerical solution of differential and integral 
equations (both of Fredholm and Volterra type) respectively. 

There is no doubt about the value and usefulness of this book—presumably 
the only available complete and systematic presentation of this important and 
interesting material. 

It is the more to be regretted that the reading of the book is rendered 
difficult and at times actually unpleasant by certain shortcomings that may 
easily have been avoided. The book has no index. The translation is occasion­
ally awkward (see, e.g., p. 27, lines 3-5). The proofreading does not appear to 

J / W ^ x - l ïf{P„{k)) 
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have been made with the necessary care; indeed, there are many printing errors 
and, while some are easily corrected by the reader, others may be quite 
confusing (e.g., the exponents rt in Theorem 1.1 should be yt). Proper names 
are often misspelled (Minkowski, p. 33 last line; Hardy, p. 99, line 12; 
Korobov several times, occasionally (p. 86, line 9) as Kopobov, which suggests 
a translation from the Russian rather than from the Chinese). A section has the 
title "The Halton Theorem", but contains several theorems and Halton's is not 
identified among them. Some terms are used with a meaning different from 
their usual one (the sums of /th powers of the roots of a polynomial equation 
are called elementary symmetric functions). Often a symbol is not defined. 
Occasionally, it is easy to guess its meaning, like {x} in Theorem 3.2 for the 
fractional part of x. Other times, like for (x) on p. 60, the reader may think 
first of the similar symbol defined in Theorem 1.5, where it means the group 
generated by x; this guess is wrong. The reader fortunate enough to know the 
book [14] by Kuipers and Niederreiter will realize that the symbol stands for 
the distance to the nearest integer. The reference to Theorem 7.4 (p. 155, line 6) 
should be to Theorem 7.14, etc. The examples could be multiplied. Some 
readers may wish to precede, or supplement, their reading of the Hua-Wang 
book by studying the papers by S. Haber, S. K. Zaremba, D. Maisonneuve, 
and H. Niederreiter in [23], all of which are quoted in the present book. A 
knowledge of the book [14] by Kuipers and Niederreiter, although this is 
restricted to the problem of uniform distribution, may also help in the reading 
of the present book. 

In spite of the mentioned superficial shortcomings, which should easily be 
taken care of in a new edition, the book by Hua and Wang is a most valuable 
contribution to numerical integration and to the solution of differential and 
integral equations. The book contains much material due to the authors 
themselves and, in many cases, the methods suggested have lead to the most 
accurate results with a minimum of computations. The tables of the Appendix 
are valuable by themselves. 

Finally, the book itself is a brilliant illustration of the practical usefulness of 
pure, abstract number theory. 
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Differential forms have motivated algebraic topology from its very begin­
ning. Efforts to understand geometry arising from the Stokes formula have led 
to homology and cohomology theory. On the other hand, differential forms 
have always played an important role in the study of topological properties of 
Riemann surfaces. 

For a long time, the only algebraic topological information of general 
validity provided by differential forms has been the de Rham theorem. 
Recently it has been discovered that differential forms furnish algebraic 
topological information extending far beyond the de Rham cohomology group 
in a systematic way. 

There are two ways of obtaining additional algebraic topological results 
from differential forms: the method of iterated path integrals and that of 
minimal models. The former method takes advantage of the geometric wealth 
of the path space, which may be regarded as expressing the dynamics of the 
space in consideration. Usual differential forms are repeatedly integrated to 


