THE RADICAL IN A FINITELY GENERATED P.I. ALGEBRA

BY AMIRAM BRAUN

Let R be an associative ring over a commutative ring $\Lambda, p\left\{X_{1}, \ldots, X_{e}\right\}$ a polynomial on the free noncommuting variables X_{1}, \ldots, X_{e}, with coefficients in Λ where one of its coefficient is +1 . We say that R is a P.I. (polynomial identity) ring satisfying $p\left\{X_{1}, \ldots, X_{e}\right\}$ if $p\left(r_{1}, \ldots, r_{e}\right)=0$ for all r_{1}, \ldots, r_{e} in R.

We have the following
Theorem A. Let $R=\Lambda\left\{x_{1}, \ldots, x_{k}\right\}$ be a p.i. ring, where Λ is a noetherian subring of the center $Z(R)$ of R. Then, $N(R)$, the nil radical of R, is nilpotent.

Recall that $N(R)=\bigcap_{p} P$ where the intersection runs on all prime ideals of R.

We obtain, as a corollary, by taking Λ to be a field, the following theorem, answering affirmatively the open problem which is posed in [$\mathrm{Pr}, \mathrm{p} .186$].

Theorem B. Let R be a finitely generated P.I. algebra over a field F. Then, $J(R)$, the Jacobson radical of R, is nilpotent.

This result, in turn, has the following important consequence.
Theorem C. Let $R=F\left\{x_{1}, \ldots, x_{k}\right\}$ be a finitely generated P.I. algebra over the field F. Then, R is a subquotient of some $n \times n$ matrix ring $M_{n}(K)$ where K is a commutative F-algebra. Equivalently, there exists an n such that R is a homomorphic image of $G(n, t)$ the ring of $t, n \times n$ generic matrices.

Kemer, in [K], announced a proof of Theorem B with the additional assumption that $\operatorname{char}(F)=0$. His proof relies on a result of Razmyslov [Ra, Theorem 3] and on certain arguments related to the connection between P.I. ring theory and the theory of representation of the symmetric group S_{n} over F, char $F=0$. Both results rely heavily on the assumption that char $F=0$, so they do not seem to generalize directly to arbitrary F.

The previously best known results concerning Theorem A are in [Ra, Theorems 1, 3, Sc, Theorem 2].

The proof of Theorem C is a straightforward application of Theorem B and a theorem of J. Lewin [Le, Theorem 10].

[^0]
We sketch a proof of Theorem B.

A major tool in our proof is the following result of Latyshev [La, Proposition 12]: "Let R be a p.i. F-algebra and $I \subset N(R)$ a finitely generated two sided ideal. Then, I is nilpotent." Latyshev's result is originally stated with the additional assumption char $F=0$, but it is superfluous.

We sketch the proof of Theorem B; the complete proof will appear elsewhere.

We have $N(R)=P_{1} \cap \cdots \cap P_{t}$, where P_{i} are the minimal prime ideals of R, ordered via

$$
\text { p.i.d }\left(R / P_{1}\right)=\cdots=\operatorname{p.i.d}\left(R / P_{m}\right) \ngtr \text { p.i.d }\left(R / P_{m+1}\right) \geqslant \cdots \geqslant \text { pi.d }\left(R / P_{t}\right)
$$

where $m \leqslant t$ (if $m=t, P_{m+1} \equiv R$). Here p.i.d (S) denotes the minimal size of matrices into which S can be embedded.

Let $\pi(R)=\operatorname{p.i} . \mathrm{d}\left(R / P_{1}\right), d(R)=\max \left\{\mathrm{k} . \mathrm{d}\left(R / P_{i}\right) \mid i=1, \ldots, m\right\}$ where k.d (S) is the classical Krull dimension of S. One observes that there exists a $b=b(k, d)$ such that if S is an F-algebra satisfying $p\left(X_{1}, \ldots, X_{e}\right.$) (of degree d) and $S=$ $F\left\{y_{1}, \ldots, y_{k}\right\}$ then $\mathrm{k} . \mathrm{d}(S) \leqslant b<\infty$. We argue on the ordered pair $\langle\pi(R), d(R)\rangle$ ordered lexicographically, that R is a counterexample to the theorem with mini$\mathrm{mal}\langle\pi(R), d(R)\rangle$. This will imply that there exists a $\lambda \notin P_{1} \cup \cdots \cup P_{m}$, a finite sum of evaluations of some central polynomial of $\pi \times \pi$ matrices $(\pi \equiv \pi(R)$). Using the result of Latyshev quoted above we may assume that $\lambda \in Z(R)$ and by the minimal choice of R, since $\langle\pi(R / \lambda R), d(R / \lambda R)\rangle<\langle\pi(R), d(R)\rangle$, we get that $\lambda^{l} R \subseteq N(R)$ for some l. Using Latyshev's result once more we may assume that R_{λ}, the localization of R with respect to the set $\left\{\lambda, \lambda^{2}, \ldots\right\}$, is Azumaya of rank π^{2} over its center. This in turn implies that $\lambda^{e} R \subseteq Z b_{1}+\cdots+Z b_{h} \equiv A$, where $Z \equiv Z(R), b_{i} \in R, i=1, \ldots, h$ and A is a ring, for some e.

Consequently, we may assume that R satisfies any preassigned finite set of identities of $\pi \times \pi$ matrices. Finally, an argument mimicing the argument appearing in [Ra, Theorem 3] enables us to settle this case.

REFERENCES

[La] V. W. Latyshev, On the complexity of non-matrix varieties of associative algebras, Algebra i Logika 16 (1977), 98-122.
[Le] J. Lewin, A matrix representative for associative algebras, Trans. Amer. Math. Soc. 188 (1974), 292-308.
[K] A. R. Kemer, Capelli identities and nilpotency of the radical of a finitely generated P.I. algebras, Dokl. Akad. Nauk SSSR 255 (1980), 793-797. (Russian)
[Pr] C. Procesi, Rings with polynomial identities, Dekker, New York, 1973.
[Ra] Y. P. Razmyslov, The Jacobson radical in P.I. algebras, Algebra and Logic 13 (1974), 192-204.
[Sc] W. Schelter, Non commutative affine P.I. rings are catenary, J. Algebra 51 (1978), 12-18.

DEPARTMENT OF MATHEMATICS, HAIFA UNIVERSITY, HAIFA, ISRAEL

[^0]: Received by the editors January 13, 1982.
 1980 Mathematics Subject Classification. Primary 16A38.

